Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 38(50): 7970-7976, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33129609

ABSTRACT

BACKGROUND: Multiple Anthrax vaccines are licensed or in development for post-exposure prophylaxis in individuals 18 to 65 years of age. No information exists on anthrax vaccines in populations over the age of 65. It is critical that we assess the capacity of anthrax vaccines to generate a protective immune response in older individuals. In this study, we compared BioThrax® to a formulation containing a CpG adjuvant (AV7909). METHODS: We conducted a Phase 2 clinical study to evaluate safety and immunogenicity of three vaccination schedules of the AV7909 vaccine candidate and one vaccination schedule of BioThrax® vaccine in adults over 65 years of age. A total of 305 subjects were enrolled to assess safety and immunogenicity by seroprotection rates, toxin neutralizing antibody titers, and anti-Protective Antigen ELISA titers. RESULTS: Compared to BioThrax, AV7909 elicited a more robust immune response in older subjects, especially with three doses of AV7909 at Days 1, 15, and 29, or two doses at Days 1 and 29. These trends were true with both seroprotection rates as defined by the percentage of subjects with 50 percent neutralization factors greater than 0.56, and geometric mean antibody titers. The responses to both AV7909 and BioThax were lower in older subjects compared to those aged 18-50. CONCLUSION: The immunogenicity data suggest that the CpG adjuvant in the AV7909 vaccine helps to elicit a more robust immune response in subjects over the age of 65. Alternative dosing strategies may be considered in this population given the high seroprotection rates with Day 1 and 29, or Day 1, 15, and 29 regimens. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT03518125.


Subject(s)
Anthrax Vaccines , Anthrax , Adolescent , Adult , Aged , Anthrax/prevention & control , Antibodies, Neutralizing , Humans , Immunization Schedule , Middle Aged , Young Adult
2.
Infect Immun ; 77(7): 2795-801, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19398544

ABSTRACT

The botulinum neurotoxins (BoNTs) are a large family of extremely potent, neuroparalytic, dichain proteins which act at the peripheral nervous system. The wide genetic diversity observed with this neurotoxin family poses a significant challenge for the development of an effective botulinum vaccine. The present study describes a vaccine development platform based on protein fragments representing the N-terminal two-thirds of each toxin molecule. These fragments, designated LH(N), comprise the light chain and translocation domains of each neurotoxin and are devoid of any neuron-binding activity. Using codon-optimized genes, LH(N) fragments derived from BoNT serotypes A and B were expressed in Escherichia coli in high yield with >1 g of purified, soluble fragment recoverable from 4.5 liter-scale fermentations. The protective efficacy of LH(N)/A was significantly enhanced by treatment with formaldehyde, which induced intramolecular cross-linking but virtually no aggregation of the fragment. A single immunization of the modified fragment protected mice from challenge with a 10(3) 50% lethal dose (LD(50)) of BoNT/A(1) with an 50% effective dose (ED(50)) of 50 ng of the vaccine. In similar experiments, the LH(N)/A vaccine was shown to protect mice against challenge with BoNT/A subtypes A(1), A(2), and A(3), which is the first demonstration of single-dose protection by a vaccine against the principal toxin subtypes of BoNT/A. The LH(N)/B vaccine was also highly efficacious, giving an ED(50) of approximately 140 ng to a challenge of 10(3) LD(50) of BoNT/B(1). In addition, LH(N)/B provided single-dose protection in mice against BoNT/B(4) (nonproteolytic toxin subtype).


Subject(s)
Bacterial Vaccines/immunology , Botulinum Toxins, Type A/immunology , Botulinum Toxins/immunology , Botulism/prevention & control , Animals , Bacterial Vaccines/genetics , Botulinum Toxins/genetics , Botulinum Toxins, Type A/genetics , Escherichia coli/genetics , Gene Expression , Mice , Models, Molecular , Survival Analysis , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...