Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 27(9): 2069-2073, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28284804

ABSTRACT

Glucokinase (GK, hexokinase IV) is a unique hexokinase that plays a central role in mammalian glucose homeostasis. Glucose phosphorylation by GK in the pancreatic ß-cell is the rate-limiting step that controls glucose-stimulated insulin secretion. Similarly, GK-mediated glucose phosphorylation in hepatocytes plays a major role in increasing hepatic glucose uptake and metabolism and possibly lowering hepatic glucose output. Small molecule GK activators (GKAs) have been identified that increase enzyme activity by binding to an allosteric site. GKAs offer a novel approach for the treatment of Type 2 Diabetes Mellitus (T2DM) and as such have garnered much attention. We now report the design, synthesis, and biological evaluation of a novel series of 2,5,6-trisubstituted indole derivatives that act as highly potent GKAs. Among them, Compound 1 was found to possess high in vitro potency, excellent physicochemical properties, and good pharmacokinetic profile in rodents. Oral administration of Compound 1 at doses as low as 0.03mg/kg led to robust blood glucose lowering efficacy in 3week high fat diet-fed mice.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Activators/chemistry , Enzyme Activators/therapeutic use , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Indoles/chemistry , Indoles/therapeutic use , Allosteric Regulation/drug effects , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Drug Design , Enzyme Activation/drug effects , Enzyme Activators/pharmacokinetics , Enzyme Activators/pharmacology , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Indoles/pharmacokinetics , Indoles/pharmacology , Insulin/blood , Insulin/metabolism , Mice , Mice, Inbred C57BL
2.
Bioorg Med Chem Lett ; 27(9): 2063-2068, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28284809

ABSTRACT

Systemically acting glucokinase activators (GKA) have been demonstrated in clinical trials to effectively lower blood glucose in patients with type II diabetes. However, mechanism-based hypoglycemia is a major adverse effect that limits the therapeutic potential of these agents. We hypothesized that the predominant mechanism leading to hypoglycemia is GKA-induced excessive insulin secretion from pancreatic ß-cells at (sub-)euglycemic levels. We further hypothesized that restricting GK activation to hepatocytes would maintain glucose-lowering efficacy while significantly reducing hypoglycemic risk. Here we report the discovery of a novel series of carboxylic acid substituted GKAs based on pyridine-2-carboxamide. These GKAs exhibit preferential distribution to the liver versus the pancreas in mice. SAR studies led to the identification of a potent and orally active hepatoselective GKA, compound 6. GKA 6 demonstrated robust glucose lowering efficacy in high fat diet-fed mice at doses ⩾10mpk, with ⩾70-fold liver:pancreas distribution, minimal effects on plasma insulin levels, and significantly reduced risk of hypoglycemia.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Activators/pharmacology , Glucokinase/metabolism , Hypoglycemic Agents/pharmacology , Pyridines/pharmacology , Animals , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Drug Discovery , Enzyme Activators/chemistry , Enzyme Activators/pharmacokinetics , Enzyme Activators/therapeutic use , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Insulin/blood , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Pancreas/drug effects , Pancreas/metabolism , Pyridines/chemistry , Pyridines/pharmacokinetics , Pyridines/therapeutic use
3.
J Med Chem ; 59(24): 11039-11049, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28002958

ABSTRACT

The discovery of novel 4-hydroxy-2-(heterocyclic)pyrimidine-5-carboxamide inhibitors of hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD) is described. These are potent, selective, orally bioavailable across several species, and active in stimulating erythropoiesis. Mouse and rat studies showed hematological changes with elevations of plasma EPO and circulating reticulocytes following single oral dose administration, while 4-week q.d. po administration in rat elevated hemoglobin levels. A major focus of the optimization process was to decrease the long half-life observed in higher species with early compounds. These efforts led to the identification of 28 (MK-8617), which has advanced to human clinical trials for anemia.


Subject(s)
Anemia/drug therapy , Drug Discovery , Enzyme Inhibitors/pharmacology , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Pyridazines/pharmacology , Pyrimidines/pharmacology , Administration, Oral , Anemia/enzymology , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Pyridazines/administration & dosage , Pyridazines/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 26(12): 2866-2869, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27161805

ABSTRACT

Reported herein are a series of reverse indoles that represent novel non-steroidal mineralocorticoid receptor (MR) antagonists. The key structure-activity relationships (SAR) are presented below. This reverse indole series is exemplified by a compound that demonstrated efficacy in an acute natriuresis rodent model comparable to marketed MR antagonists, spironolactone and eplerenone.


Subject(s)
Drug Discovery , Indoles/pharmacology , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Mineralocorticoid/metabolism , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Mineralocorticoid Receptor Antagonists/chemical synthesis , Mineralocorticoid Receptor Antagonists/chemistry , Molecular Structure , Structure-Activity Relationship
5.
Article in English | MEDLINE | ID: mdl-26117309

ABSTRACT

A tandem mass spectrometry method combined with an ion-pair chromatographic separation after weak cation exchange solid phase sample extraction for epinephrine (E), norepinephrine (NE) and dopamine (DA) has been developed. Two surrogate matrixes for plasma and urine as well as stable isotope labeled internal standards were utilized for quantitation. The observed dynamic range of E, NE and DA was 0.025-100ng/ml for plasma, and 0.25-1000ng/ml for urine with a r(2) regression coefficient >0.99. Extraction recoveries were greater than 60% and the lower limit of quantitation was 25pg/ml for all three analytes in plasma. This method provided excellent sensitivity and selectivity for use with small sample volumes (≤25uL), enabling high-throughput pharmacodynamic animal model development and screening of adverse effects.


Subject(s)
Catecholamines/blood , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Animals , Blood Glucose/analysis , Linear Models , Rats , Reproducibility of Results , Sensitivity and Specificity , Swine , Swine, Miniature
6.
J Pharmacol Toxicol Methods ; 71: 137-46, 2015.
Article in English | MEDLINE | ID: mdl-25304940

ABSTRACT

INTRODUCTION: In vivo profiles of aldosterone synthase inhibitors (ASIs) have been investigated utilizing various rodent models. Due to lack of CYP17 activity, rodents produce corticosterone rather than cortisol as that of humans, which raised concern to their effectiveness in translational pharmacological characterization of ASI. METHODS: A rhesus monkey model that combines a low sodium diet with adrenocorticotropin (ACTH) treatment was developed. Plasma concentrations of steroid metabolites associated with reactions catalyzed by CYP11B2 and CYP11B1 were measured concurrently by a UPLC/MS method. RESULTS: Plasma concentration of aldosterone in regular diet fed rhesus monkeys was low at 109pg/mL. Aldosterone concentrations were increased to 252pg/mL when animals were maintained on a low sodium diet for 3weeks, and to 300pg/mL with ACTH treatment at 0.3mg/kg. The combination of low sodium diet with ACTH treatment further increased plasma concentration of aldosterone to 730pg/mL and other steroid metabolites at various levels. Intravenous administration of ASI, fadrozole (0.001-1mg/kg) or LCI699 (0.003-3mg/kg), led to dose-dependent reductions in aldosterone and 18-hydroxycorticosterone, increases in 11-deoxycorticosterone and 11-deoxycortisol, and bell-shaped changes in cortisol and corticosterone. In vivo selectivity of CYP11B2/CYP11B1 for fadrazole was 26-fold and LCI-699 was 27-fold, which was consistent with relative selectivity using in vitro values from recombinant cells transfected with rhesus monkey CYP11B2 and CYP11B1. DISCUSSION: This model enables concurrent characterization of pharmacokinetics, pharmacodynamics and selectivity of CYP11B2 over CYP11B1 inhibition in the same animal. It may be used as a translational model for pharmacological characterization of ASI.


Subject(s)
Cytochrome P-450 CYP11B2/antagonists & inhibitors , Enzyme Inhibitors/pharmacokinetics , Models, Animal , Adrenocorticotropic Hormone/administration & dosage , Adrenocorticotropic Hormone/pharmacokinetics , Animals , Cytochrome P-450 CYP11B2/metabolism , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Macaca mulatta , Male , Sodium, Dietary/administration & dosage , Sodium, Dietary/pharmacokinetics , Steroid 11-beta-Hydroxylase/antagonists & inhibitors , Steroid 11-beta-Hydroxylase/metabolism , Steroids/blood , Steroids/metabolism
7.
Bioorg Med Chem Lett ; 24(7): 1657-60, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24636945

ABSTRACT

Bioisosteres are integral components of modern pharmaceutical research that allow structural optimization to maximize in vivo efficacy and minimize adverse effects by selectively modifying pharmacodynamic, pharmacokinetic and physicochemical properties. A recent medicinal chemistry campaign focused on identifying small molecule inhibitors of prolylcarboxypeptidase (PrCP) initiated an investigation into the use of pyrazoles as bioisosteres for amides. The results indicate that pyrazoles are suitable bioisosteric replacements of amide functional groups. The study is an example of managing bioisosteric replacement by incorporating subsequent structural modifications to maintain potency against the selected target. A heuristic model for an embedded pharmacophore is also described.


Subject(s)
Carboxypeptidases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Animals , Carboxypeptidases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Humans , Mice , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
10.
J Med Chem ; 56(14): 5940-8, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23808489

ABSTRACT

Hydroisoindoline 2 has been previously identified as a potent, brain-penetrant NK1 receptor antagonist with a long duration of action and improved profile of CYP3A4 inhibition and induction compared to aprepitant. However, compound 2 is predicted, based on data in preclinical species, to have a human half-life longer than 40 h and likely to have drug-drug-interactions (DDI), as 2 is a victim of CYP3A4 inhibition caused by its exclusive clearance pathway via CYP3A4 oxidation in humans. We now report 2-[(3aR,4R,5S,7aS)-5-{(1S)-1-[3,5-bis(trifluoromethyl)phenyl]-2-hydroxyethoxy}-4-(2-methylphenyl)octahydro-2H-isoindol-2-yl]-1,3-oxazol-4(5H)-one (3) as a next generation NK1 antagonist that possesses an additional clearance pathway through glucuronidation in addition to that via CYP3A4 oxidation. Compound 3 has a much lower propensity for drug-drug interactions and a reduced estimated human half-life consistent with once daily dosing. In preclinical species, compound 3 has demonstrated potency, brain penetration, and a safety profile similar to 2, as well as excellent pharmacokinetics.


Subject(s)
Isoindoles/chemical synthesis , Neurokinin-1 Receptor Antagonists/chemical synthesis , Oxazoles/chemical synthesis , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Drug Interactions , Glucuronides/metabolism , Humans , Isoindoles/chemistry , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Metabolic Clearance Rate , Neurokinin-1 Receptor Antagonists/chemistry , Neurokinin-1 Receptor Antagonists/pharmacokinetics , Neurokinin-1 Receptor Antagonists/pharmacology , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Peptide Fragments/pharmacology , Substance P/analogs & derivatives , Substance P/pharmacology
12.
Obesity (Silver Spring) ; 21(7): 1406-15, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23671037

ABSTRACT

OBJECTIVE: Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransferase 1 (DGAT1) using small molecules DGAT1 inhibitors, compounds K and L. DESIGN AND METHODS: Biochemical and stable-label tracer approaches were applied to interrogate the functional activities of compounds K and L on TG synthesis and changes of carbon flow. Energy homeostasis and gut peptide release upon DGAT1 inhibition was conducted in mouse and dog models. RESULTS: Compounds K and L, dose-dependently inhibits post-prandial TG excursion in mouse and dog models. Weight loss studies in WT and Dgat1(-/-) mice, confirmed that the effects of compound K on body weight loss is mechanism-based. Compounds K and L altered incretin peptide release following oral fat challenge. Immunohistochemical studies with intestinal tissues demonstrate lack of detectable DGAT1 immunoreactivity in enteroendocrine cells. Furthermore, (13) C-fatty acid tracing studies indicate that compound K inhibition of DGAT1 increased the production of phosphatidyl choline (PC). CONCLUSION: Treatment with DGAT1 inhibitors improves lipid metabolism and body weight. DGAT1 inhibition leads to enhanced PC production via alternative carbon channeling. Immunohistological studies suggest that DGAT1 inhibitor's effects on plasma gut peptide levels are likely via an indirect mechanism. Overall these data indicate a translational potential towards the clinic.


Subject(s)
Body Weight/drug effects , Diacylglycerol O-Acyltransferase/metabolism , Gastrointestinal Tract/drug effects , Animals , Body Composition , Chromatography, Liquid , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Diacylglycerol O-Acyltransferase/genetics , Disease Models, Animal , Dogs , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism , Feces/chemistry , Gastrointestinal Tract/metabolism , Ginsenosides/pharmacology , HT29 Cells , Hormones/metabolism , Humans , Immunohistochemistry , Lactones/pharmacology , Male , Mice , Mice, Inbred C57BL , Orlistat , Postprandial Period/drug effects , Tandem Mass Spectrometry , Triglycerides/blood
13.
J Lipid Res ; 54(1): 177-88, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23103473

ABSTRACT

The use of nicotinic acid to treat dyslipidemia is limited by induction of a "flushing" response, mediated in part by the interaction of prostaglandin D(2) (PGD(2)) with its G-protein coupled receptor, DP1 (Ptgdr). The impact of DP1 blockade (genetic or pharmacologic) was assessed in experimental murine models of atherosclerosis. In Ptgdr(-/-)ApoE(-/-) mice versus ApoE(-/-) mice, both fed a high-fat diet, aortic cholesterol content was modestly higher (1.3- to 1.5-fold, P < 0.05) in Ptgdr(-/-)ApoE(-/-) mice at 16 and 24 weeks of age, but not at 32 weeks. In multiple ApoE(-/-) mouse studies, a DP1-specific antagonist, L-655, generally had a neutral to beneficial effect on aortic lipids in the presence or absence of nicotinic acid treatment. In a separate study, a modest increase in some atherosclerotic measures was observed with L-655 treatment in Ldlr(-/-) mice fed a high-fat diet for 8 weeks; however, this effect was not sustained for 16 or 24 weeks. In the same study, treatment with nicotinic acid alone generally decreased plasma and/or aortic lipids, and addition of L-655 did not negate those beneficial effects. These studies demonstrate that inhibition of DP1, with or without nicotinic acid treatment, does not lead to consistent or sustained effects on plaque burden in mouse atherosclerotic models.


Subject(s)
Gene Knockdown Techniques , Niacin/pharmacology , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/genetics , Receptors, Prostaglandin/antagonists & inhibitors , Receptors, Prostaglandin/genetics , Animals , Aorta/drug effects , Aorta/metabolism , Apolipoproteins E/deficiency , Cholesterol/metabolism , Drug Interactions , Endpoint Determination , Female , Humans , Male , Mice , Niacin/therapeutic use , Plaque, Atherosclerotic/genetics , Receptors, Immunologic/deficiency , Receptors, LDL/deficiency , Receptors, Prostaglandin/deficiency , Receptors, Thromboxane A2, Prostaglandin H2/metabolism
14.
J Med Chem ; 55(13): 6137-48, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22708876

ABSTRACT

A potent, selective glucagon receptor antagonist 9m, N-[(4-{(1S)-1-[3-(3,5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-ß-alanine, was discovered by optimization of a previously identified lead. Compound 9m is a reversible and competitive antagonist with high binding affinity (IC(50) of 6.6 nM) and functional cAMP activity (IC(50) of 15.7 nM). It is selective for glucagon receptor relative to other family B GPCRs, showing IC(50) values of 1020 nM for GIPR, 9200 nM for PAC1, and >10000 nM for GLP-1R, VPAC1, and VPAC2. Compound 9m blunted glucagon-induced glucose elevation in hGCGR mice and rhesus monkeys. It also lowered ambient glucose levels in both acute and chronic mouse models: in hGCGR ob/ob mice it reduced glucose (AUC 0-6 h) by 32% and 39% at 3 and 10 mpk single doses, respectively. In hGCGR mice on a high fat diet, compound 9m at 3, and 10 mpk po in feed lowered blood glucose levels by 89% and 94% at day 10, respectively, relative to the difference between the vehicle control and lean hGCGR mice. On the basis of its favorable biological and DMPK properties, compound 9m (MK-0893) was selected for further preclinical and clinical evaluations.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Glucagon/metabolism , Pyrazoles/pharmacology , Receptors, Glucagon/antagonists & inhibitors , beta-Alanine/analogs & derivatives , Animals , Area Under Curve , CHO Cells , Cricetinae , Cricetulus , Diet, High-Fat/adverse effects , Disease Models, Animal , Dogs , Glucagon-Like Peptide-1 Receptor , Humans , Inhibitory Concentration 50 , Macaca mulatta , Mice , Mice, Obese , Microsomes, Liver/metabolism , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Rats , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/antagonists & inhibitors , Receptors, Vasoactive Intestinal Peptide, Type II/antagonists & inhibitors , Receptors, Vasoactive Intestinal Polypeptide, Type I/antagonists & inhibitors , beta-Alanine/chemistry , beta-Alanine/pharmacology , beta-Alanine/therapeutic use
15.
Bioorg Med Chem Lett ; 22(8): 2811-7, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22444683

ABSTRACT

A new structural class of potent prolylcarboxypeptidase (PrCP) inhibitors was discovered by high-throughput screening. The series possesses a tractable SAR profile with sub-nanomolar in vitro IC(50) values. Compared to prior inhibitors, the new series demonstrated minimal activity shifts in pure plasma and complete ex vivo plasma target engagement in mouse plasma at the 20 h post-dose time point (po). In addition, the in vivo level of CNS and non-CNS drug exposure was measured.


Subject(s)
Carboxypeptidases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors , Animals , Butanols/chemical synthesis , Butanols/chemistry , Butanols/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Obesity/drug therapy , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/pharmacology
16.
Bioorg Med Chem Lett ; 22(8): 2818-22, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22444685

ABSTRACT

A series of potent inhibitors of prolylcarboxypeptidase (PrCP) was developed by modifying a lead structure that was discovered by high-throughput screening. The tert-butyl pyrrolidine was replaced by an aminocyclopentane to reduce the metabolic liabilities of the original lead. The compounds demonstrated sub-nanomolar in vitro IC(50) values, minimal activity shifts in pure plasma and improved pharmacokinetics. Complete ex vivo plasma target engagement was achieved with low brain exposure at the 20 h time point following p.o. dosing in a mouse. The results indicate that the aminocyclopentanes are useful tools for studying the therapeutic potential of peripheral (non-CNS) PrCP inhibition.


Subject(s)
Amines/pharmacology , Carboxypeptidases/antagonists & inhibitors , Cyclopentanes/pharmacology , Drug Discovery , Enzyme Inhibitors , Amines/chemical synthesis , Amines/chemistry , Animals , Cyclization , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Obesity/drug therapy
18.
J Med Chem ; 55(7): 2945-59, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22364528

ABSTRACT

The discovery of 1,3,8-triazaspiro[4.5]decane-2,4-diones (spirohydantoins) as a structural class of pan-inhibitors of the prolyl hydroxylase (PHD) family of enzymes for the treatment of anemia is described. The initial hit class, spirooxindoles, was identified through affinity selection mass spectrometry (AS-MS) and optimized for PHD2 inhibition and optimal PK/PD profile (short-acting PHDi inhibitors). 1,3,8-Triazaspiro[4.5]decane-2,4-diones (spirohydantoins) were optimized as an advanced lead class derived from the original spiroindole hit. A new set of general conditions for C-N coupling, developed using a high-throughput experimentation (HTE) technique, enabled a full SAR analysis of the spirohydantoins. This rapid and directed SAR exploration has resulted in the first reported examples of hydantoin derivatives with good PK in preclinical species. Potassium channel off-target activity (hERG) was successfully eliminated through the systematic introduction of acidic functionality to the molecular structure. Undesired upregulation of alanine aminotransferese (ALT) liver enzymes was mitigated and a robust on-/off-target margin was achieved. Spirohydantoins represent a class of highly efficacious, short-acting PHD1-3 inhibitors causing a robust erythropoietin (EPO) upregulation in vivo in multiple preclinical species. This profile deems spirohydantoins as attractive short-acting PHDi inhibitors with the potential for treatment of anemia.


Subject(s)
Anemia/drug therapy , Aza Compounds/chemical synthesis , Hydantoins/chemical synthesis , Hypoxia-Inducible Factor 1/metabolism , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Spiro Compounds/chemical synthesis , Animals , Aza Compounds/pharmacokinetics , Aza Compounds/pharmacology , Dogs , ERG1 Potassium Channel , Erythropoietin/biosynthesis , Ether-A-Go-Go Potassium Channels/metabolism , High-Throughput Screening Assays , Humans , Hydantoins/pharmacokinetics , Hydantoins/pharmacology , Hypoxia-Inducible Factor-Proline Dioxygenases , Indoles/chemical synthesis , Indoles/pharmacokinetics , Indoles/pharmacology , Liver/drug effects , Liver/enzymology , Macaca mulatta , Mass Spectrometry , Mice , Mice, Inbred C57BL , Protein Binding , Rats , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship , Up-Regulation
19.
Bioorg Med Chem Lett ; 22(4): 1550-6, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22264488

ABSTRACT

A series of benzodihydroisofurans were discovered as novel, potent, bioavailable and brain-penetrant prolylcarboxypeptidase (PrCP) inhibitors. The structure-activity relationship (SAR) is focused on improving PrCP activity and metabolic stability, and reducing plasma protein binding. In the established diet-induced obese (eDIO) mouse model, compound ent-3a displayed target engagement both in plasma and in brain. However, this compound failed to induce significant body weight loss in eDIO mice in a five-day study.


Subject(s)
Carboxypeptidases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Furans/chemistry , Furans/pharmacology , Animals , Cells, Cultured , Disease Models, Animal , Drug Stability , Enzyme Activation/drug effects , Furans/chemical synthesis , Humans , Mice , Mice, Obese , Molecular Structure , Structure-Activity Relationship
20.
SELECTION OF CITATIONS
SEARCH DETAIL
...