Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
J Sci Food Agric ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441287

ABSTRACT

BACKGROUND: During the brewing of soy sauce, the conversion of multiple substances is driven by various microorganisms and their secreted enzyme systems. Soy sauce mash is an important source of enzyme systems during moromi fermentation, but the changes of enzyme systems in soy sauce mash during moromi fermentation are poorly understood. In order to explore the predominant enzyme systems existing during moromi fermentation and to explain the characteristics of the enzyme system changes, an enzymatic activities assay and 4D-label-free proteomics analysis were conducted on soy sauce mash at different stages of fermentation. RESULTS: The activities of hydrolytic enzymes in soy sauce mash decreased continuously throughout the fermentation process, while most of the characteristic physicochemical substances in soy sauce mash supernatant had already accumulated at the early stage of fermentation. Four hydrolytic enzymes were found to be positively correlated with important physicochemical indexes by principal component analysis and Pearson correlation analysis. The proteomics analysis revealed three highly upregulated enzymes and two enzymes that were present in important metabolic pathways throughout the fermentation process. Furthermore, it was found that Aspergillus oryzae was able to accumulate various nutrients in the soy sauce mash by downregulating most of its metabolic pathways. CONCLUSION: Enzymes present with excellent properties during the moromi fermentation period could be obtained from these results. Meanwhile, the characterization of the metabolic pathways of microorganisms during the moromi fermentation period was revealed. The results provide a basis for more scientific and purposeful improvement of moromi fermentation in the future. © 2024 Society of Chemical Industry.

2.
Food Res Int ; 177: 113756, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225154

ABSTRACT

The flavor regulation of soy sauce fermented in winter is imminent challenge for the industry, while fermentation temperature is considered as an effective method to fortify soy sauce flavor. Thus, industrial-level fermentation systems with controlled temperature at 30°C (SSCT) and regular temperature (SSRT) in winter were designed to elucidate molecular basis and microbial regulatory mechanism of temperature-controlled flavor enhancement of soy sauce. Sensory evaluation suggested 30°C fermentation enhanced caramel-like, floral, fruity, roasted nut and smoky aroma. A total of 160 volatiles were identified, of which 39 components were evaluated for odor activity value (OAV). Eleven volatiles were determined as the odor markers distinguishing the aroma profiles of SSRT and SSCT, among which 2,5-dimethyl-4-hydroxy-3(2H)-furanone (HDMF, caramel-like), ß-damascenone (floral), ethyl 2-methylpropanoate (fruity), ethyl acetate (fruity) and 2/3-methyl-1-butanol (malty, alcoholic) were largely responsible for the flavor enhancement. Moreover, high-throughput sequencing results demonstrated the temperature intervention induced more differential bacterial structure (R = 0.324, P = 0.001) than fungal structure (R = 0.069, P = 0.058). Correlation analysis revealed dominant and low-abundance genus together drove the formation and variation of volatile profile, particularly Weissella, Tetragenococcus, Starmerella and Pediococcus. Representatively, the formation pathways of key aroma substances HDMF and 5-ethyl-4-hydroxy-2-methyl-3(2H)-furanone (HEMF) were elaborated. Both temperature-mediated abiotic reactions and gene functions of microbiota were proposed to favor the yields of HDMF and C5 precursor of HEMF, whereas the small populations of Zygosaccharomyces and insufficient acetaldehyde limited the elevation of the HEMF level through the biosynthesis pathway. This study provided the practical and theoretical basis for the industrial applications of temperature control in soy sauce fermentation.


Subject(s)
Microbiota , Soy Foods , Soy Foods/analysis , Temperature , Fermentation , Odorants/analysis
3.
Small ; 20(1): e2304196, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37665232

ABSTRACT

Nanofiber is the critical building block for many biological systems to perform various functions. Artificial assembly of molecules into nanofibers in a controllable and reversible manner will create "smart" functions to mimic those of their natural analogues and fabricate new functional materials, but remains an open challenge especially for nature macromolecules. Herein, the controllable and reversible assembly of nanofiber (CSNF) from natural macromolecules with oppositely charged groups are successfully realized by protonation and deprotonation of charged groups. By controlling the electrostatic interaction via protonation and deprotonation, the size and morphology of the assembled nanostructures can be precisely controlled. A strong electrostatic interaction contributes to large nanofiber with high strength, while poor electrostatic interaction produces finer nanofiber or nanoparticle. And especially, the assembly, disassembly, and reassembly of the nanofiber occurs reversibly through protonation and deprotonation, thereby paving a new way for precisely controlling the assembly process and structure of nanofiber. The reversible assembly allows the nanostructure to dynamically reorganize in response to subtle perturbation of environment. The as-prepared CSNF is mechanical strong and can be used as a nano building block to fabricate high-strength film, wire, and straw. This study offers many opportunities for the biomimetic synthesis of new functional materials.

4.
Clin Transl Med ; 13(11): e1493, 2023 11.
Article in English | MEDLINE | ID: mdl-38009315

ABSTRACT

BACKGROUND: Biopsies obtained from primary oesophageal squamous cell carcinoma (ESCC) guide diagnosis and treatment. However, spatial intra-tumoral heterogeneity (ITH) influences biopsy-derived information and patient responsiveness to therapy. Here, we aimed to elucidate the spatial ITH of ESCC and matched lymph node metastasis (LNmet ). METHODS: Primary tumour superficial (PTsup ), deep (PTdeep ) and LNmet subregions of patients with locally advanced resectable ESCC were evaluated using whole-exome sequencing (WES), whole-transcriptome sequencing and spatially resolved digital spatial profiling (DSP). To validate the findings, immunohistochemistry was conducted and a single-cell transcriptomic dataset was analysed. RESULTS: WES revealed 15.72%, 5.02% and 32.00% unique mutations in PTsup , PTdeep and LNmet , respectively. Copy number alterations and phylogenetic trees showed spatial ITH among subregions both within and among patients. Driver mutations had a mixed intra-tumoral clonal status among subregions. Transcriptome data showed distinct differentially expressed genes among subregions. LNmet exhibited elevated expression of immunomodulatory genes and enriched immune cells, particularly when compared with PTsup (all P < .05). DSP revealed orthogonal support of bulk transcriptome results, with differences in protein and immune cell abundance between subregions in a spatial context. The integrative analysis of multi-omics data revealed complex heterogeneity in mRNA/protein levels and immune cell abundance within each subregion. CONCLUSIONS: This study comprehensively characterised spatial ITH in ESCC, and the findings highlight the clinical significance of unbiased molecular classification based on multi-omics data and their potential to improve the understanding and management of ESCC. The current practices for tissue sampling are insufficient for guiding precision medicine for ESCC, and routine profiling of PTdeep and/or LNmet should be systematically performed to obtain a more comprehensive understanding of ESCC and better inform treatment decisions.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Multiomics , Phylogeny , Esophageal Neoplasms/pathology , Mutation/genetics
5.
Molecules ; 28(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894530

ABSTRACT

A series of petroleum coke (petcoke)-derived solid acid catalysts were prepared via nitric acid treatment with or without ball milling pretreatment. The inherent sulfur in petcoke was converted to sulfonic groups, which were active sites for the esterification of octanoic acid and methanol at 60 °C, with ester yields of 14-43%. More specifically, samples without ball milling treated at 120 °C for 3 h had a total acidity of 4.67 mmol/g, which was 1.6 times that of the samples treated at 80 °C, despite their -SO3H acidities being similar (~0.08 mmol/g). The samples treated for 24 h had higher -SO3H (0.10 mmol/g) and total acidity (5.25 mmol/g) but not increased catalytic activity. Ball milling increased the defects and exposed aromatic hydrogen groups on petcoke, which facilitated further acid oxidation (0.12 mmol -SO3H/g for both materials and total acidity of 5.18 mmol/g and 5.01 mmol/g for BP-N-3/120 and BP-N-8/90, respectively) and an increased ester yield. DFT calculations were used to analyze the pathways of sulfonic acid group formation, and the reaction pathway with NO2• was the most thermodynamically and kinetically favourable. The activities of the prepared catalysts were related to the number of -SO3H acid sites, the total acidity, and the oxygen content, with the latter two factors having a negative impact.

6.
Foods ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37761218

ABSTRACT

Microbial inoculation in moromi fermentation has a great influence on the physicochemical and flavour properties of soy sauces. This work investigated the effect of inoculating Tetragenococcus halophilus and Wickerhamomyces anomalus on the flavour formation of early-stage moromi (30 days) fermented at a lower temperature (22 °C) by determining their physicochemical and aroma changes. The results showed that single yeast or LAB inoculation increased the production of amino nitrogen, lactic acid and acetic acid, as well as free amino acids and key flavour components. Particularly, the sequential inoculation of T. halophilus and W. anomalus produced more free amino acids and aromatic compounds, and there might be synergistic effects between these two strains. More characteristic soy sauce flavour compounds, such as benzaldehyde, HEMF, guaiacol and methyl maltol were detected in the sequentially inoculated moromi, and this sample showed higher scores in savoury, roasted and caramel intensities. These results confirmed that sequential inoculation of T. halophilus and W. anomalus could be a choice for the future production of moromi with good flavour and quality under a lower temperature.

7.
Osteoporos Int ; 34(11): 1937-1949, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37526672

ABSTRACT

PURPOSE: There has been a persistent claim that dairy products contain calcium-leaching proteins, although the soundness of such a claim has been challenged. A meta-analysis of randomized controlled trials (RCTs) on the effects of milk-derived protein supplementation on bone health indices in adults was performed to reconcile the controversy surrounding the potential skeletal safety concerns of proteins of dairy origin. METHODS: The PubMed and Web of Science databases were searched for relevant RCTs. A random-effects model was used to generate pooled effect sizes and 95% confidence intervals. RESULTS: Milk-derived protein supplementation did not significantly affect whole-body BMD (n = 7 RCTs) and BMD at the lumbar spine (n = 10), hip (n = 8), femoral neck (n = 9), trochanter (n = 5), intertrochanter (n = 2), and ultradistal radius (n = 2). The concentrations of bone formation markers (bone-specific alkaline phosphatase [n = 11], osteocalcin [n = 6], procollagen type 1 amino-terminal propeptide [n = 5]), bone resorption markers (N-terminal telopeptide of type 1 collagen [n = 7], C-terminal telopeptide of type 1 collagen [n = 7], deoxypyridinoline [n = 4]), and parathyroid hormone (n = 7) were not significantly affected. However, increased insulin-like growth factor-1 (IGF-1) concentrations (n = 13) were observed. Reduced IGF-1 concentrations were observed when soy protein was used as a comparator, and increased IGF-1 concentrations were observed when carbohydrate was used. CONCLUSION: Our findings do not support the claim that proteins of dairy origin are detrimental to bone health.

8.
Sensors (Basel) ; 23(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37300023

ABSTRACT

Silicon-based kinetic energy converters employing variable capacitors, also known as electrostatic vibration energy harvesters, hold promise as power sources for Internet of Things devices. However, for most wireless applications, such as wearable technology or environmental and structural monitoring, the ambient vibration is often at relatively low frequencies (1-100 Hz). Since the power output of electrostatic harvesters is positively correlated to the frequency of capacitance oscillation, typical electrostatic energy harvesters, designed to match the natural frequency of ambient vibrations, do not produce sufficient power output. Moreover, energy conversion is limited to a narrow range of input frequencies. To address these shortcomings, an impacted-based electrostatic energy harvester is explored experimentally. The impact refers to electrode collision and it triggers frequency upconversion, namely a secondary high-frequency free oscillation of the electrodes overlapping with primary device oscillation tuned to input vibration frequency. The main purpose of high-frequency oscillation is to enable additional energy conversion cycles since this will increase the energy output. The devices investigated were fabricated using a commercial microfabrication foundry process and were experimentally studied. These devices exhibit non-uniform cross-section electrodes and a springless mass. The non-uniform width electrodes were used to prevent pull-in following electrode collision. Springless masses from different materials and sizes, such as 0.5 mm diameter Tungsten carbide, 0.8 mm diameter Tungsten carbide, zirconium dioxide, and silicon nitride, were added in an attempt to force collisions over a range of applied frequencies that would not otherwise result in collisions. The results show that the system operates over a relatively wide frequency range (up to 700 Hz frequency range), with the lower limit far below the natural frequency of the device. The addition of the springless mass successfully increased the device bandwidth. For example, at a low peak-to-peak vibration acceleration of 0.5 g (peak-to-peak), the addition of a zirconium dioxide ball doubled the device's bandwidth. Testing with different balls indicates that the different sizes and material properties have different effects on the device's performance, altering its mechanical and electrical damping.


Subject(s)
Tungsten Compounds , Vibration , Physical Phenomena
9.
Environ Sci Pollut Res Int ; 30(17): 48999-49013, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764989

ABSTRACT

A magnetic MnFe2O4/MWNT nanocomposite activated with sodium persulfate (PDS) was investigated for the removal of the widely used antibiotic tetracycline (TC). The best-performing 80 wt.% MnFe2O4/MWNT nanocomposite was screened for catalytic degradation of TC by comparing the catalytic and adsorption processes. The nanocomposite was evaluated using a series of physical characterizations. The effects of catalyst dosage, PDS dosage, temperature, initial pH, and initial concentration of TC on TC removal were investigated. After the reaction for 90 min, the addition of 4 mM PDS to the 80 wt.% MnFe2O4/CNT catalyst at 0.5 g/L degraded 78.85% of TC and 51.97% of TOC at an initial TC concentration of 40 mg/L. The reusability of MnFe2O4/MWNT nanocomposite was evaluated and the structural stability of the material was verified. It was demonstrated that multiple active species (SO4-, ·OH, ·O2-, 1O2) were produced in the MnFe2O4/MWNT/PDS system. The catalytic mechanism was analyzed based on the XPS results. Total organic carbon (TOC) measurement indicated partial TC had completely mineralized. The presumable degradation pathway of TC was proposed according to intermediate products by the LC-MS method.


Subject(s)
Anti-Bacterial Agents , Tetracycline , Tetracycline/chemistry , Anti-Bacterial Agents/chemistry , Oxidation-Reduction , Magnetic Phenomena , Oxidative Stress
10.
Protein Cell ; 14(1): 37-50, 2023 01.
Article in English | MEDLINE | ID: mdl-36726760

ABSTRACT

The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.


Subject(s)
Antiviral Agents , Hepatitis B virus , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , SARS-CoV-2 , Animals , Mice , Antiviral Agents/pharmacology , COVID-19 , Interferon Type I/metabolism , SARS-CoV-2/drug effects , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors
11.
Heliyon ; 9(2): e12952, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36747560

ABSTRACT

Eutectic Sn-Ag-Cu lead-free solder has limited applications due to cost and reliability issues. Sn-Ag-Zn solder has the advantages of low melting point, good mechanical properties and reliable welding interface. However, the research system of low silver content Sn-Ag-Zn solder is incomplete. In this paper, Sn-2.0Ag-1.5Zn low silver content alloy solder is soldered to different substrates. The interfacial reaction after soldering and the microstructure and reliability under different aging treatment conditions are studied. Sn-2.0Ag-1.5Zn solder is made into solder balls by direct melting method. The solder balls are placed in a solder strength tester to be heated and welded to the substrate, and then the solder joints are placed in a heating furnace for aging treatment. The results show that the solder is soldered to the bare Cu substrate, and a dense double-layer Intermetallic Compound (IMC) structure of Cu5Zn8 and Ag3Sn is formed at the interface after aging treatment. The double-layer structure blocks each other, limiting the development of copper-tin IMCs. The solder is soldered with the Cu substrate electroplated with Ni barrier layer, and the soldering interface forms a thin layer of Ni3Sn4 metal compound. After aging for 1000 h, the thickness of Ni3Sn4 is about 1 µm, the thickness of Ni barrier layer is kept at 2-3 µm, and the barrier effect of Ni barrier layer is stable. Sn-2.0Ag-1.5Zn solder has excellent loss performance in long aging treatment. It has good heat-resistance aging treatment, good quality of solder connection, high interface reliability and less environmental pollution. The low silver content in Sn-2.0Ag-1.5Zn solder results in a significant cost reduction. Coarse IMC Ag3Sn is not easily formed. The optimized ratio of Ag and Zn in Sn-2.0Ag-1.5Zn solder improves the strength and toughness of the solder joint. The performance has been improved, and it is a very promising alloy solder.

12.
J Biomech Eng ; 145(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-35864787

ABSTRACT

Fiber-reinforced hydrogels are a class of soft composite materials that have seen increased use across a wide variety of biomedical applications. However, existing fabrication techniques for these hydrogels are unable to realize biologically relevant macro/mesoscale geometries. To address this limitation, this paper presents a novel air-assisted, dual-polarity electrospinning printhead that converges high-strength electric fields, with low velocity air flow to remove the collector dependency seen with traditional far-field electrospinning setups. The use of this printhead in conjunction with different configurations of deformable collection templates has resulted in the production of three classes of fiber-reinforced hydrogel prototype geometries, viz., (i) tubular geometries with bifurcations and mesoscale texturing; (ii) hollow, nontubular geometries with single and dual-entrances; and (iii) three-dimensional (3D) printed flat geometries with varying fiber density. All three classes of prototype geometries were mechanically characterized to have properties that were in line with those observed in living soft tissues. With the realization of this printhead, biologically relevant macro/mesoscale geometries can be realized using fiber-reinforced hydrogels to aid a wide array of biomedical applications.


Subject(s)
Hydrogels
13.
Cancer Gene Ther ; 30(1): 22-37, 2023 01.
Article in English | MEDLINE | ID: mdl-35999359

ABSTRACT

We have demonstrated that CDK5RAP3 exerts a tumour suppressor effect in gastric cancer, but its role in regulating tumour-associated macrophages (TAMs) has not yet been reported. Here, we show that CDK5RAP3 is related to the infiltration and polarization of macrophages. It inhibits the polarization of TAMs to M2 macrophages and promotes the polarization of the M1 phenotype. CDK5RAP3 reduces the recruitment of circulating monocytes to infiltrate tumour tissue by inhibiting the CCL2/CCR2 axis in gastric cancer. Blocking CCR2 reduces the growth of xenograft tumours and the infiltration of monocytes. CDK5RAP3 inhibits the nuclear transcription of NF-κB, thereby reducing the secretion of the cytokines IL4 and IL10 and blocking the polarization of M2 macrophages. In addition, the absence of CDK5RAP3 in gastric cancer cells allows macrophages to secrete more MMP2 to promote the epithelial-mesenchymal transition (EMT) process of gastric cancer cells, thereby enhancing the invasion and migration ability. Our results imply that CDK5RAP3 may be involved in the regulation of immune activity in the tumour microenvironment and is expected to become a potential immunotherapy target for gastric cancer.


Subject(s)
Stomach Neoplasms , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Signal Transduction , Macrophages , Cytokines , Tumor Microenvironment/genetics , Cell Line, Tumor , Cell Cycle Proteins , Tumor Suppressor Proteins/genetics
14.
J Sci Food Agric ; 103(2): 606-615, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36054657

ABSTRACT

BACKGROUND: Soybeans and defatted soybeans, commonly used as protein ingredients, have different flavors of their fermented soy sauce. Clarifying the differences between the two soy sauces, as well as the formation mechanism, is an important prerequisite for improving the flavor of defatted soybean soy sauce. To this goal, the aroma characteristics of two soy sauces and their volatile profiles were compared by sensory evaluation and gas chromatography-mass spectrometry, and eight enzyme activities and volatile profiles of matured koji were determined. RESULTS: Sensory results showed that the acids, fruity and cooked potato-like attributes were higher in whole soybean fermented soy sauce, whereas defatted soybean soy sauce exhibited higher smoky and malty attributes, closely related to the contents of aroma-active compounds in soy sauce, such as isobutyl acetate, 2/3-methylbutanal, acetic acid and 2/3-methylbutanoic acid. The content of most volatiles in the matured kojis showed a consistent trend with that of soy sauce: alcohols, acids, furan(one)s and ketones. Interestingly, acid protease and cellulase activities were 3.3 and 1.6 times higher in the whole soybean koji than in defatted soybean koji, respectively, whereas neutral protease, aminopeptidase, glucoamylase and ß-glucosidase were approximately 2.0 times higher in defatted soybean koji. CONCLUSION: In summary, the flavor differences between soybean and defatted soybean fermented soy sauce were not only caused by the differences in the content of flavor precursors in the materials, but also closely related to the differences in the enzymatic profiles accumulated during the koji-making process. © 2022 Society of Chemical Industry.


Subject(s)
Soy Foods , Soy Foods/analysis , Glycine max/metabolism , Fermentation , Odorants/analysis , Peptide Hydrolases/metabolism
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008866

ABSTRACT

This study explored the effect and mechanism of Maiwei Yangfei Decoction(MWYF) on pulmonary fibrosis(PF) mice. MWYF was prepared, and its main components were detected by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-MS/MS). Male C57BL/6J mice were randomly divided into a control group, a model group, a pirfenidone(PFD) group, and low-, medium-, and high-dose MWYF groups, with 10 mice in each group. The PF model was induced in mice except for those in the control group by intratracheal instillation of bleomycin(BLM), and model mice were treated with saline or MWYF or PFD by gavage the next day. The water consumption, food intake, hair, and activity of mice were observed daily. The pathological changes in lung tissues were observed by hematoxylin-eosin(HE) staining, Masson staining, and CT scanning. The level of hydroxyproline(HYP) in lung tissues was detected by alkaline hydrolysis. Immunohistochemistry was used to observe the expression of collagen type Ⅲ(COL3) and fibronectin. The mRNA expression levels of α-smooth muscle actin(α-SMA), type Ⅰ collagen α1(COL1α1), COL3, and vimentin were detected by reverse transcription real-time fluorescence quantitative polymerase chain reaction(RT-qPCR). Superoxide dismutase(SOD) and malondialdehyde(MDA) kits were used to detect oxidative stress indicators in lung tissues and serum. The nuclear translocation of nuclear factor E2-related factor 2(Nrf2) protein was detected by immunofluorescence. The protein and mRNA expression levels of Nrf2, catalase(CAT), and heme oxygenase 1(HO-1) in lung tissues were detected by Western blot and RT-qPCR. Twelve chemical components were detected by UPLC-MS/MS. Animal experiments showed that MWYF could improve alveolar inflammation, collagen deposition, and fibrosis in PF mice, increase body weight of mice, and down-regulate the expression of fibrosis indexes such as HYP, α-SMA, COL1α1, COL3, fibronectin, and vimentin in lung tissues. In addition, MWYF could potentiate the activity of SOD in lung tissues and serum of PF mice, up-regulate the expression level of Nrf2, and promote its transfer to the nucleus, up-regulate the levels of downstream antioxidant target genes CAT and HO-1, and then reduce the accumulation of lipid metabolite MDA. In summary, MWYF can significantly improve the pathological damage and fibrosis of lung tissues in PF mice, and its mechanism may be related to the activation of the Nrf2 pathway to regulate oxidative stress.


Subject(s)
Mice , Male , Animals , Pulmonary Fibrosis/chemically induced , NF-E2-Related Factor 2/metabolism , Fibronectins/metabolism , Vimentin/metabolism , Chromatography, Liquid , Mice, Inbred C57BL , Tandem Mass Spectrometry , Oxidative Stress , Superoxide Dismutase/metabolism , RNA, Messenger/metabolism
16.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6682-6692, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38212028

ABSTRACT

This study explored the effect and mechanism of Maiwei Yangfei Decoction(MWYF) on pulmonary fibrosis(PF) mice. MWYF was prepared, and its main components were detected by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-MS/MS). Male C57BL/6J mice were randomly divided into a control group, a model group, a pirfenidone(PFD) group, and low-, medium-, and high-dose MWYF groups, with 10 mice in each group. The PF model was induced in mice except for those in the control group by intratracheal instillation of bleomycin(BLM), and model mice were treated with saline or MWYF or PFD by gavage the next day. The water consumption, food intake, hair, and activity of mice were observed daily. The pathological changes in lung tissues were observed by hematoxylin-eosin(HE) staining, Masson staining, and CT scanning. The level of hydroxyproline(HYP) in lung tissues was detected by alkaline hydrolysis. Immunohistochemistry was used to observe the expression of collagen type Ⅲ(COL3) and fibronectin. The mRNA expression levels of α-smooth muscle actin(α-SMA), type Ⅰ collagen α1(COL1α1), COL3, and vimentin were detected by reverse transcription real-time fluorescence quantitative polymerase chain reaction(RT-qPCR). Superoxide dismutase(SOD) and malondialdehyde(MDA) kits were used to detect oxidative stress indicators in lung tissues and serum. The nuclear translocation of nuclear factor E2-related factor 2(Nrf2) protein was detected by immunofluorescence. The protein and mRNA expression levels of Nrf2, catalase(CAT), and heme oxygenase 1(HO-1) in lung tissues were detected by Western blot and RT-qPCR. Twelve chemical components were detected by UPLC-MS/MS. Animal experiments showed that MWYF could improve alveolar inflammation, collagen deposition, and fibrosis in PF mice, increase body weight of mice, and down-regulate the expression of fibrosis indexes such as HYP, α-SMA, COL1α1, COL3, fibronectin, and vimentin in lung tissues. In addition, MWYF could potentiate the activity of SOD in lung tissues and serum of PF mice, up-regulate the expression level of Nrf2, and promote its transfer to the nucleus, up-regulate the levels of downstream antioxidant target genes CAT and HO-1, and then reduce the accumulation of lipid metabolite MDA. In summary, MWYF can significantly improve the pathological damage and fibrosis of lung tissues in PF mice, and its mechanism may be related to the activation of the Nrf2 pathway to regulate oxidative stress.


Subject(s)
Pulmonary Fibrosis , Mice , Male , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/chemically induced , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Fibronectins/metabolism , Vimentin/metabolism , Chromatography, Liquid , Mice, Inbred C57BL , Tandem Mass Spectrometry , Oxidative Stress , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , RNA, Messenger/metabolism
17.
Nutrients ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364801

ABSTRACT

An energy-restricted weight-loss approach has limitations when it used in the elderly, especially because of muscle loss. We aimed to assess the effects of whey protein (WP) or WP hydrolysate (WPH) combined with an energy-restricted diet (ERD) on weight reduction and muscle preservation in older women with overweight and obesity. A total of 60 women were randomized to the control (ERD), WP (ERD + 20 g/d WP) or WPH (ERD + 20 g/d WPH) group, using a 1:1:1 allocation ratio. After an 8-week intervention, body composition, gut microbiota, and serum metabolomics changes were compared among the three groups. The reductions in body weight (−1.11 ± 1.11 vs. −2.34 ± 1.35, p < 0.05), BMI (−0.46 ± 0.45 vs. −0.97 ± 0.54, p < 0.05), and body fat (−0.70 ± 0.92 vs. −2.45 ± 1.65, p < 0.01) were higher in the WPH group than in the control group. Body fat (%) was significantly decreased in the two protein groups. Fat-free mass did not significantly change among the three groups. Serum metabolomics showed that the tricarboxylic acid cycle pathway was upregulated in the WPH group. No significant changes in microbiota were observed among the groups. In conclusion, WP or WPH supplementation combined with an energy-restricted diet benefits older women during weight loss. WPH was more effective, possibly due to increased energy metabolism.


Subject(s)
Dietary Supplements , Weight Loss , Humans , Female , Aged , Whey Proteins , Body Composition , Diet
18.
Antioxidants (Basel) ; 11(8)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-36009227

ABSTRACT

This study aimed to investigate the preventive effects of lactoferrin (Lf) on chronic alcoholic liver injury (ALI) in female mice. Female C57BL/6J mice were randomly divided into four groups: control group (CON), ethanol administration group (EtOH), low-dose Lf treatment group (LLf), and high-dose Lf group (HLf). In the last three groups, chronic ALI was induced by administering 20% ethanol ad libitum for 12 weeks. Mice in the CON and EtOH groups were fed with AIN-93G diet. Meanwhile, 0.4% and 4% casein in the AIN-93G diet were replaced by Lf as the diets of LLf and HLf groups, respectively. HLf significantly reduced hepatic triglyceride content and improved pathological morphology. HLf could inhibit cytochrome P450 2E1 overexpression and promote alcohol dehydrogenase-1 expression. HLf activated protein kinase B and AMP-activated protein kinase (AMPK), as well as upregulating nuclear-factor-erythroid-2-related factor-2 expression to elevate hepatic antioxidative enzyme activities. AMPK activation also benefited hepatic lipid metabolism. Meanwhile, HLf had no obvious beneficial effects on gut microbiota. In summary, Lf could alleviate chronic ALI in female mice, which was associated with redox balance and lipid metabolism regulation.

19.
Sci Adv ; 8(33): eabn3623, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35977009

ABSTRACT

Glasses have markedly different stability around their glass transition temperature (Tg), and metallic glasses (MGs) are conventionally regarded as metastable compared to other glasses such as silicate glass or amber. Here, we show an aging experiment on a Ce-based MG around its Tg (~0.85Tg) for more than 17 years. We find that the MG with strong fragility could transform into kinetic and thermodynamic hyperstable state after the long-term room temperature aging and exhibits strong resistance against crystallization. The achieved hyperstable state is closer to the ideal glass state compared with that of other MGs and similar to that of the million-year-aged amber, which is attributed to its strong fragility and strong resistance against nucleation. It is also observed through the asymmetrical approaching experiment that the hyperaged Ce-based MG can reach equilibrium liquid state below Tg without crystallization, which supports the idea that nucleation only occurs after the completion of enthalpy relaxation.

20.
Front Immunol ; 13: 904693, 2022.
Article in English | MEDLINE | ID: mdl-35784355

ABSTRACT

Natural killer (NK) cells have been demonstrated as a promising cellular therapy as they exert potent anti-tumor immune responses. However, applications of NK cells to tumor immunotherapy, especially in the treatment of advanced hematopoietic and solid malignancies, are still limited due to the compromised survival and short persistence of the transferred NK cells in vivo. Here, we observed that fucosyltransferase (FUT) 7 and 8 were highly expressed on NK cells, and the expression of CLA was positively correlated with the accumulation of NK cells in clinical B cell lymphoma development. Via enzyme-mediated ex vivo cell-surface fucosylation, the cytolytic effect of NK cells against B cell lymphoma was significantly augmented. Fucosylation also promoted NK cell accumulation in B cell lymphoma-targeted tissues by enhancing their binding to E-selectin. Moreover, fucosylation of NK cells also facilitated stronger T cell anti-tumor immune responses. These findings suggest that ex vivo fucosylation contributes to enhancing the effector functions of NK cells and may serve as a novel strategy for tumor immunotherapy.


Subject(s)
Lymphoma, B-Cell , Neoplasms , Humans , Immunotherapy , Killer Cells, Natural , Lymphocyte Activation , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...