Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903873

ABSTRACT

Duckweeds are well known for their high accumulation of starch under stress conditions, along with inhibited growth. The phosphorylation pathway of serine biosynthesis (PPSB) was reported as playing a vital role in linking the carbon, nitrogen, and sulfur metabolism in this plant. The overexpression of AtPSP1, the last key enzyme of the PPSB pathway in duckweed, was found to stimulate the accumulation of starch under sulfur-deficient conditions. The growth- and photosynthesis-related parameters were higher in the AtPSP1 transgenic plants than in the WT. The transcriptional analysis showed that the expression of several genes in starch synthesis, TCA, and sulfur absorption, transportation, and assimilation was significantly up- or downregulated. The study suggests that PSP engineering could improve starch accumulation in Lemna turionifera 5511 by coordinating the carbon metabolism and sulfur assimilation under sulfur-deficient conditions.

2.
J Plant Physiol ; 284: 153966, 2023 May.
Article in English | MEDLINE | ID: mdl-36965290

ABSTRACT

The effect and function mechanism of maleic hydrazide on the growth of mature leaves is unclear. Duckweed is widely used as a model plant to study the effect of compounds on plant growth. The observation of section and ultrastructure of the fronds, the comparation of SOD enzyme activity and related-gene transcriptional expression level showed that 75 µg/mL maleic hydrazide could prompt the growth of the mother fronds in S. Polyrriza 7498. The half-mother fronds (without meristematic tissue, cut from the mother fronds) with little meristematic tissue could repair themselves and delay their senescence by 75 µg/mL MH. The mother fronds turned more greener with 50 µg/mL MH and exogenous 0.1 µmol/L 6-BA (a kind of cytokinin) treatment, as well as with the increasing of fresh and dry weight in S. Polyrriza 7498. RNA-Seq data found that the happy growth of the mother fronds caused by MH, was probably resulted from up-regulating the expression of gene related to the synthesis and signaling transduction of cytokinin in S. Polyrriza 7498. Which are responsible for the maintaining membrane system integrate and transport protein function. The work gives lights to the study of function mechanism of MH prompting mature leaves growth and delaying mature leaves senescence in plant. And it provides a strategy to increase biomass with the application of low concentration MH and 6-BA in the same time in agriculture.


Subject(s)
Maleic Hydrazide , Female , Humans , Mothers , Cytokinins/metabolism , Plants/metabolism , Plant Development
3.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232863

ABSTRACT

It has been demonstrated that the phosphorylation pathway of L-serine (Ser) biosynthesis (PPSB) is very important in plant growth and development, but whether and how PPSB affects nitrogen metabolism and starch accumulation has not been fully elucidated. In this study, we took the energy plant duckweed (strain Lemna turionifera 5511) as the research object and used a stable genetic transformation system to heterologously over-expressing Arabidopsis AtPSAT1 (the gene encoding phosphoserine aminotransferase, the second enzyme of PPSB). Our results showed that, under nitrogen starvation, the transgenic plants grew faster, with higher values of Fv/Fm, rETR, and Y(II), as well as fresh and dry weight, than the wild-type. More promisingly, the accumulation of starch was also found to be significantly improved when over-expressing AtPSAT1 in the transgenic plants. qRT-PCR analysis results showed that the expression of genes related to nitrogen assimilation, carbon metabolism, and starch biosynthesis was up-regulated, while the expression of starch degradation-related genes was down-regulated by AtPSAT1 over-expression. We propose that the increased starch accumulation caused by AtPSAT1 over-expression may result from both elevated photosynthetic capacity and nitrogen utilization efficiency. This research sheds new light on the mechanism underlying the ability of PPSB to coordinate nitrogen and carbon metabolism, and provides a feasible way to improve starch production, that is, through engineering PPSB in crops.


Subject(s)
Arabidopsis , Araceae , Arabidopsis/metabolism , Araceae/genetics , Carbon/metabolism , Nitrogen/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Serine/metabolism , Starch/metabolism , Transaminases
4.
PLoS One ; 17(5): e0267989, 2022.
Article in English | MEDLINE | ID: mdl-35511959

ABSTRACT

The addition of supplemental light (SL) is an effective way to offset insufficient lighting. Although it is commonly believed that SL increases leaf photosynthesis and therefore improves yield and fruit flavor, the mechanism underlying the effects of SL on the photosystem II (PSII) apparatus remains unclear, and SL leads to high energy consumption. In order to save energy, we investigated the physiological status of the PSII apparatus, plant growth parameters and fruit parameters under two types of overhead SL with a low daily energy consumption of 0.0918 kWh m-2. The results showed that SL significantly increased the leaf chlorophyll content from full unfolding to yellowing. However, a remarkable increase in the absorption flux per cross-section (ABS/CS), the quantum yield of electron transport (φEo) and the performance index (PIabs) was observed only in a relatively short period of the leaf life cycle. SL also enhanced the fruit yield and quality. The obviously increased ΔVK and ΔVJ components of the chlorophyll fluorescence induction kinetic (OJIP) curve, along with the significantly decreased PIabs from days 40-60 after unfolding in the SL-treated groups, resulted in more rapid leaf aging and earlier fruit ripening compared with the control plants (CK). Therefore, an energy-friendly SL strategy can alter the physiological status of the PSII apparatus, affecting yield and fruit quality and maturity.


Subject(s)
Photosystem II Protein Complex , Solanum lycopersicum , Chlorophyll/pharmacology , Light , Solanum lycopersicum/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...