Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 242: 107777, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37714021

ABSTRACT

BACKGROUND AND OBJECTIVE: Aimed at the shortcomings of using time interval ( [Formula: see text] ) between the sounds produced by the aortic valve closure (A2) and the pulmonary valve closure (P2) to detect the wide splitting of the second heart sound (S2), which are the [Formula: see text] easily influenced by the heartbeat and not easily distinguished from the fixed splitting of S2 without considering the entire respiratory phase, and from the third heart sound (S3), this study proposes a novel methodology to detect the wide splitting of S2 using an estimated split coefficient of S2 ( [Formula: see text] ) combined with an adaptive number (NAda) of S2. METHODOLOGY: The methodology is orderly summarized as follows: Stage 1 describes the segmentation-based S2 automatic location and extraction. A Gaussian mixture model (GMM)-based regression model for S2 is proposed to estimate the positions of A2 and P2, then an overlapping rate (OLR)-based [Formula: see text] and the [Formula: see text] are estimated, and finally, a NAda-S2 is automatically determined to calculate the statistics of [Formula: see text] and [Formula: see text] . In stage 3, based on the combination of estimated features, the detection of wide splitting of S2 is determined. RESULTS: The performance is evaluated using a total of 3350-period heart sounds from 72 patients, with an overall accuracy of 100%, F1=1 and a Cohen's kappa value (κ) of 1. DISCUSSION: The significant contributions are highlighted: A novel GMM-based efficient methodology is proposed for estimating the characteristics of A2 and P2. A novel OLR-based [Formula: see text] is defined to replace the current state-of-the-art criterion for evaluating the split degree of S2. Considering respiration phases combined with CR are proposed for the high-precision diagnosis of S2 wide split.


Subject(s)
Heart Sounds , Humans , Heart Auscultation/methods , Aortic Valve , Heart Rate , Thorax
2.
Anal Bioanal Chem ; 413(11): 3017-3026, 2021 May.
Article in English | MEDLINE | ID: mdl-33635387

ABSTRACT

The long-term consumption of food with pesticide residues has harmful effects on human health and the demand for pesticide detection technology tends to be miniaturized and instant. To this end, we demonstrated the first application of indirectly detecting two carbamate pesticides, metolcarb and carbaryl, by gold nanoparticle-modified indium tin oxide electrode in dual-channel microchip electrophoresis and amperometric detection (ME-AD) system. m-Cresol and α-naphthol were obtained after pesticide hydrolysis in alkaline solution, and then separated and detected by ME-AD. Parameters including the detection potential and running buffer concentration and pH were optimized to improve the detection sensitivity and separation efficiency. Under the optimal conditions, the two analytes were completely separated within 80 s. m-Cresol and α-naphthol presented a wide linear range from 1 to 100 µM, with limits of detection of 0.16 µM and 0.34 µM, respectively (S/N = 3). Moreover, the reliability of this system was demonstrated by analyzing metolcarb and carbaryl in spiked vegetable samples.


Subject(s)
Carbamates/analysis , Electrochemical Techniques/methods , Electrophoresis, Microchip/methods , Pesticide Residues/analysis , Limit of Detection , Reference Standards , Reproducibility of Results , Vegetables/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...