Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20232023 05 18.
Article in English | MEDLINE | ID: mdl-37207350

ABSTRACT

Enhancers, which are key tumorigenic factors with wide applications for subtyping, diagnosis and treatment of cancer, are attracting increasing attention in the cancer research. However, systematic analysis of cancer enhancers poses a challenge due to the lack of integrative data resources, especially those from tumor primary tissues. To provide a comprehensive enhancer profile across cancer types, we developed a cancer enhancer database CenhANCER by curating public resources including all the public H3K27ac ChIP-Seq data from 805 primary tissue samples and 671 cell line samples across 41 cancer types. In total, 57 029 408 typical enhancers, 978 411 super-enhancers and 226 726 enriched transcription factors were identified. We annotated the super-enhancers with chromatin accessibility regions, cancer expression quantitative trait loci (eQTLs), genotype-tissue expression eQTLs and genome-wide association study risk single nucleotide polymorphisms (SNPs) for further functional analysis. The identified enhancers were highly consistent with accessible chromatin regions in the corresponding cancer types, and all the 10 super-enhancer regions identified from one colorectal cancer study were recapitulated in our CenhANCER, both of which testified the high quality of our data. CenhANCER with high-quality cancer enhancer candidates and transcription factors that are potential therapeutic targets across multiple cancer types provides a credible resource for single cancer analysis and for comparative studies of various cancer types. Database URL http://cenhancer.chenzxlab.cn/.


Subject(s)
Genome-Wide Association Study , Neoplasms , Humans , Enhancer Elements, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Line , Chromatin , Neoplasms/genetics
2.
J Genet Genomics ; 48(12): 1122-1129, 2021 12.
Article in English | MEDLINE | ID: mdl-34538772

ABSTRACT

The origination of new genes contributes to the biological diversity of life. New genes may quickly build their network, exert important functions, and generate novel phenotypes. Dating gene age and inferring the origination mechanisms of new genes, like primate-specific genes, is the basis for the functional study of the genes. However, no comprehensive resource of gene age estimates across species is available. Here, we systematically date the age of 9,102,113 protein-coding genes from 565 species in the Ensembl and Ensembl Genomes databases, including 82 bacteria, 57 protists, 134 fungi, 58 plants, 56 metazoa, and 178 vertebrates, using a protein-family-based pipeline with Wagner parsimony algorithm. We also collect gene age estimate data from other studies and uniformly distribute the gene age estimates to time ranges in a million years for comparison across studies. All the data are cataloged into GenOrigin (http://genorigin.chenzxlab.cn/), a user-friendly new database of gene age estimates, where users can browse gene age estimates by species, age, and gene ontology. In GenOrigin, the information such as gene age estimates, annotation, gene ontology, ortholog, and paralog, as well as detailed gene presence/absence views for gene age inference based on the species tree with evolutionary timescale, is provided to researchers for exploring gene functions.


Subject(s)
Evolution, Molecular , Vertebrates , Algorithms , Animals , Phylogeny , Software , Vertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...