Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 26(8): 3951-3964, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28574353

ABSTRACT

Objective assessment of image quality is fundamentally important in many image processing tasks. In this paper, we focus on learning blind image quality assessment (BIQA) models, which predict the quality of a digital image with no access to its original pristine-quality counterpart as reference. One of the biggest challenges in learning BIQA models is the conflict between the gigantic image space (which is in the dimension of the number of image pixels) and the extremely limited reliable ground truth data for training. Such data are typically collected via subjective testing, which is cumbersome, slow, and expensive. Here, we first show that a vast amount of reliable training data in the form of quality-discriminable image pairs (DIPs) can be obtained automatically at low cost by exploiting large-scale databases with diverse image content. We then learn an opinion-unaware BIQA (OU-BIQA, meaning that no subjective opinions are used for training) model using RankNet, a pairwise learning-to-rank (L2R) algorithm, from millions of DIPs, each associated with a perceptual uncertainty level, leading to a DIP inferred quality (dipIQ) index. Extensive experiments on four benchmark IQA databases demonstrate that dipIQ outperforms the state-of-the-art OU-BIQA models. The robustness of dipIQ is also significantly improved as confirmed by the group MAximum Differentiation competition method. Furthermore, we extend the proposed framework by learning models with ListNet (a listwise L2R algorithm) on quality-discriminable image lists (DIL). The resulting DIL inferred quality index achieves an additional performance gain.

2.
IEEE Trans Image Process ; 26(1): 452-463, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28113763

ABSTRACT

Graph model is emerging as a very effective tool for learning the complex structures and relationships hidden in data. In general, the critical purpose of graph-oriented learning algorithms is to construct an informative graph for image clustering and classification tasks. In addition to the classical K-nearest-neighbor and r-neighborhood methods for graph construction, l1-graph and its variants are emerging methods for finding the neighboring samples of a center datum, where the corresponding ingoing edge weights are simultaneously derived by the sparse reconstruction coefficients of the remaining samples. However, the pairwise links of l1-graph are not capable of capturing the high-order relationships between the center datum and its prominent data in sparse reconstruction. Meanwhile, from the perspective of variable selection, the l1 norm sparse constraint, regarded as a LASSO model, tends to select only one datum from a group of data that are highly correlated and ignore the others. To simultaneously cope with these drawbacks, we propose a new elastic net hypergraph learning model, which consists of two steps. In the first step, the robust matrix elastic net model is constructed to find the canonically related samples in a somewhat greedy way, achieving the grouping effect by adding the l2 penalty to the l1 constraint. In the second step, hypergraph is used to represent the high order relationships between each datum and its prominent samples by regarding them as a hyperedge. Subsequently, hypergraph Laplacian matrix is constructed for further analysis. New hypergraph learning algorithms, including unsupervised clustering and multi-class semi-supervised classification, are then derived. Extensive experiments on face and handwriting databases demonstrate the effectiveness of the proposed method.

3.
IEEE Trans Image Process ; 24(8): 2355-68, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25872208

ABSTRACT

There is growing interest in multilabel image classification due to its critical role in web-based image analytics-based applications, such as large-scale image retrieval and browsing. Matrix completion (MC) has recently been introduced as a method for transductive (semisupervised) multilabel classification, and has several distinct advantages, including robustness to missing data and background noise in both feature and label space. However, it is limited by only considering data represented by a single-view feature, which cannot precisely characterize images containing several semantic concepts. To utilize multiple features taken from different views, we have to concatenate the different features as a long vector. However, this concatenation is prone to over-fitting and often leads to very high time complexity in MC-based image classification. Therefore, we propose to weightedly combine the MC outputs of different views, and present the multiview MC (MVMC) framework for transductive multilabel image classification. To learn the view combination weights effectively, we apply a cross-validation strategy on the labeled set. In particular, MVMC splits the labeled set into two parts, and predicts the labels of one part using the known labels of the other part. The predicted labels are then used to learn the view combination coefficients. In the learning process, we adopt the average precision (AP) loss, which is particular suitable for multilabel image classification, since the ranking-based criteria are critical for evaluating a multilabel classification system. A least squares loss formulation is also presented for the sake of efficiency, and the robustness of the algorithm based on the AP loss compared with the other losses is investigated. Experimental evaluation on two real-world data sets (PASCAL VOC' 07 and MIR Flickr) demonstrate the effectiveness of MVMC for transductive (semisupervised) multilabel image classification, and show that MVMC can exploit complementary properties of different features and output-consistent labels for improved multilabel image classification.

SELECTION OF CITATIONS
SEARCH DETAIL
...