Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gait Posture ; 40(4): 570-4, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25086801

ABSTRACT

Inconsistent findings with regard to plantar pressure while walking in the diabetic population may be due to the heterogeneity of the studied groups resulting from the classification/grouping criteria adopted. The clinical diagnosis and classification of diabetes have inherent uncertainties that compromise the definition of its onset and the differentiation of its severity stages. A fuzzy system could improve the precision of the diagnosis and classification of diabetic neuropathy because it takes those uncertainties into account and combines different assessment methods. Here, we investigated how plantar pressure abnormalities evolve throughout different severity stages of diabetic polyneuropathy (absent, n=38; mild, n=20; moderate, n=47; severe, n=24). Pressure distribution was analysed over five areas while patients walked barefoot. Patients with mild neuropathy displayed an increase in pressure-time integral at the forefoot and a lower peak pressure at the heel. The peak and pressure-time integral under the forefoot and heel were aggravated in later stages of the disease (moderate and severe) compared with early stages of the disease (absent and mild). In the severe group, lower pressures at the lateral forefoot and hallux were observed, which could be related to symptoms that develop with the aggravation of neuropathy: atrophy of the intrinsic foot muscles, reduction of distal muscle activity, and joint stiffness. Although there were clear alterations over the forefoot and in a number of plantar areas with higher pressures within each severity stage, they did not follow the aggravation evolution of neuropathy classified by the fuzzy model. Based on these results, therapeutic interventions should begin in the early stages of this disease to prevent further consequences of the disease.


Subject(s)
Diabetic Neuropathies/physiopathology , Foot/physiopathology , Diabetic Neuropathies/classification , Female , Fuzzy Logic , Gait/physiology , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Pressure
2.
Gait Posture ; 36(2): 312-5, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22424760

ABSTRACT

Unstable shoes have been designed to promote "natural instability" and during walking they should simulate barefoot gait, enhancing muscle activity and, thus, attributing an advantage over regular tennis shoes. Recent studies showed that, after special training on the appropriate walking pattern, the use of the Masai Barefoot Technology (MBT) shoe increases muscle activation during walking. Our study presents a comparison of muscle activity as well as horizontal and vertical forces during gait with the MBT, a standard tennis shoe and barefoot walking of healthy individuals without previous training. These variables were compared in 25 female subjects and gait conditions were compared using ANOVA repeated measures (effect size:0.25). Walking with the MBT shoe in this non-instructed condition produced higher vertical forces (first vertical peak and weight acceptance rate) than walking with a standard shoe or walking barefoot, which suggests an increase in the loads received by the musculoskeletal system, especially at heel strike. Walking with the MBT shoe did not increase muscle activity when compared to walking with the standard shoe. The barefoot condition was more effective than the MBT shoe at enhancing muscle activation. Therefore, in healthy individuals, no advantage was found in using the MBT over a standard tennis shoe without a special training period. Further studies using the MBT without any instruction over a longer period are needed to evaluate if the higher loads observed in the present study would return to their baseline values after a period of adaptation, and if the muscle activity would increase over time.


Subject(s)
Electromyography , Gait/physiology , Muscle, Skeletal/physiology , Shoes , Walking/physiology , Adult , Biomechanical Phenomena , Female , Foot/physiology , Humans , Leg/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...