Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 10822, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35752655

ABSTRACT

The roughness property of rocks is significant in engineering studies due to their mechanical and hydraulic performance and the possibility of quantifying flow velocity and predicting the performance of wells and rock mass structures. However, the study of roughness in rocks is usually carried out through 2D linear measurements (through mechanical profilometer equipment), obtaining a coefficient that may not represent the entire rock surface. Thus, based on the hypothesis that it is possible to quantify the roughness coefficient in rock plugs reconstructed three-dimensionally by the computer vision technique, this research aims to an alternative method to determine the roughness coefficient in rock plugs. The point cloud generated from the 3D model of the photogrammetry process was used to measure the distance between each point and a calculated fit plane over the entire rock surface. The roughness was quantified using roughness parameters ([Formula: see text]) calculated in hierarchically organized regions. In this hierarchical division, the greater the quantity of division analyzed, the greater the detail of the roughness. The main results show that obtaining the roughness coefficient over the entire surface of the three-dimensional model has peculiarities that would not be observed in the two-dimensional reading. From the 2D measurements, mean roughness values ([Formula: see text]) of [Formula: see text] and [Formula: see text] were obtained for samples 1 and 2, respectively. By the same method, the results of the [Formula: see text] coefficient applied three-dimensionally over the entire rocky surface were at most [Formula: see text] and [Formula: see text], respectively, showing the difference in values along the surface and the importance of this approach.

2.
Sci Rep ; 12(1): 1486, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087044

ABSTRACT

The quantitative determination of average roughness parameters, from the determination of height variations of the surface points, is frequently used to estimate the adhesion between an adhesive and the surface of a substrate. However, to determine the interaction between an adhesive and a surface of a heterogeneous material, such as a red ceramic, it is essential to define other roughness parameters. This work proposes a method for determining the roughness of red ceramic blocks from a three-dimensional evaluation, with the objective of estimating the contact area that the ceramic substrate can provide for a cementitious matrix. The study determines the average surface roughness from multiple planes and proposes the adoption of 2 more roughness parameters, the valley area index and the average valley area. The results demonstrate that there are advantages in using the proposed multiple plane method for roughness computation and that the valley area parameters are efficient to estimate the extent of adhesion between the materials involved.

3.
Sci Rep ; 9(1): 15038, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31636338

ABSTRACT

Quality evaluation of a material's surface is performed through roughness analysis of surface samples. Several techniques have been presented to achieve this goal, including geometrical analysis and surface roughness analysis. Geometric analysis allows a visual and subjective evaluation of roughness (a qualitative assessment), whereas computation of the roughness parameters is a quantitative assessment and allows a standardized analysis of the surfaces. In civil engineering, the process is performed with mechanical profilometer equipment (2D) without adequate accuracy and laser profilometer (3D) with no consensus on how to interpret the result quantitatively. This work proposes a new method to evaluate surface roughness, starting from the generation of a visual surface roughness signature, which is calculated through the roughness parameters computed in hierarchically organized regions. The evaluation tools presented in this new method provide a local and more accurate evaluation of the computed coefficients. In the tests performed it was possible to quantitatively analyze roughness differences between ceramic blocks and to find that a quantitative microscale analysis allows to identify the largest variation of roughness parameters Raavg, Rasdv, Ramin and Ramax between samples, which benefit the evaluation and comparison of the sampled surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...