Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 11(14): 6755-6765, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30907400

ABSTRACT

In this paper we show the advantages of transparent high conductive films based on filled single-wall carbon nanotubes. The nanotubes with internal channels filled with acceptor molecules (copper chloride or iodine) form networks demonstrating significantly improved characteristics. Due to the charge transfer between the nanotubes and filler, the doped-nanotube films exhibit a drop in electrical sheet resistance of an order of magnitude together with a noticeable increase of film transparency in the visible and near-infrared spectral range. The thermoelectric power measurements show a significant improvement of air-stability of the nanotube network in the course of the filling procedure. For the nanotube films with an initial transparency of 87% at 514 nm and electrical sheet resistance of 862 Ohm sq-1 we observed an improvement of transparency up to 91% and a decrease of sheet resistance down to 98 Ohm sq-1. The combination of the nanotube synthesis technique and molecules for encapsulation has been optimized for applications in optoelectronics.

2.
Sci Rep ; 6: 23547, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27009238

ABSTRACT

Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to a large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and to close-packed surfaces of fcc-Ni(111) and hcp-Co(0001). Epitaxial deposition of h-BN on ferromagnetic metals is aimed at small interface scattering of charge and spin carriers. We report on the controlled growth of h-BN/Ni(111) by means of molecular beam epitaxy (MBE). Structural and electronic properties of this system are investigated using cross-section transmission electron microscopy (TEM) and electron spectroscopies which confirm good agreement with the properties of bulk h-BN. The latter are also corroborated by density functional theory (DFT) calculations, revealing that the first h-BN layer at the interface to Ni is metallic. Our investigations demonstrate that MBE is a promising, versatile alternative to both the exfoliation approach and chemical vapour deposition of h-BN.

3.
Neuroscience ; 159(4): 1300-8, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19215725

ABSTRACT

Impaired regulation of presynaptic intracellular calcium is thought to adversely affect synaptic plasticity and cognition in the aged brain. We studied presynaptic cytosolic and mitochondrial calcium (Ca) dynamics using axonally loaded Calcium Green-AM and Rhod-2 AM fluorescence respectively in young (2-3 months) and aged (23-26 months) CA3 to CA1 Schaffer collateral excitatory synapses in hippocampal brain slices from Fisher 344 rats. After a tetanus (100 Hz, 200 ms), the presynaptic cytosolic Ca peaked at approximately 10 s in the young and approximately 12 s in the aged synapses. Administration of the membrane permeant Ca chelator, bis (O-aminophenoxy)-ethane-N,N,N,N-tetraacetic acid (BAPTA-AM), significantly attenuated the Ca response in the aged slices, but not in the young slices. The presynaptic mitochondrial Ca signal was much slower, peaking at approximately 90 s in both young and aged synapses, returning to baseline by 300 s. BAPTA-AM significantly attenuated the mitochondrial calcium signal only in the young synapses. Uncoupling mitochondrial respiration by carbonyl cyanide m-chlorophenylhydrazone (CCCP) application evoked a massive intracellular cytosolic Ca increase and a significant drop of mitochondrial Ca, especially in aged slices wherein the cytosolic Ca signal disappeared after approximately 150 s of washout and the mitochondrial Ca signal disappeared after 25 s of washout. These signals were preserved in aged slices by BAPTA-AM. Five minutes of oxygen glucose deprivation (OGD) was associated with a significant increase in cytosolic Ca in both young and aged synapses, which was irreversible in the aged synapses. These responses were significantly attenuated by BAPTA-AM in both the young and aged synapses. These results support the hypothesis that increasing intracellular calcium neuronal buffering in aged rats ameliorates age-related impaired presynaptic Ca regulation.


Subject(s)
Aging , Calcium/metabolism , Cytoplasm/metabolism , Hippocampus/metabolism , Mitochondria/metabolism , Presynaptic Terminals/metabolism , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/administration & dosage , Cell Hypoxia/physiology , Central Nervous System Agents/administration & dosage , Chelating Agents/administration & dosage , Cytoplasm/drug effects , Egtazic Acid/administration & dosage , Egtazic Acid/analogs & derivatives , Electron Transport/drug effects , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Glucose/deficiency , Hippocampus/drug effects , In Vitro Techniques , Mitochondria/drug effects , Presynaptic Terminals/drug effects , Rats , Rats, Inbred F344 , Synapses/drug effects , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...