Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(1)2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30609851

ABSTRACT

This article discusses specific quantum transitions in a few-particle hole gas, localized in a strongly oblate lens-shaped quantum dot. Based on the adiabatic method, the possibility of realizing the generalized Kohn theorem in such a system is shown. The criteria for the implementation of this theorem in a lens-shaped quantum dot, fulfilled in the experiment, is presented. An analytical expression is obtained for the frequencies of resonant absorption of far-infrared radiation by a gas of heavy holes, which depends on the geometric parameters of the quantum dot. The results of experiments on far-infrared absorption in the arrays of p-doped Ge/Si quantum dots grown by molecular beam epitaxy (MBE) with gradually increasing average number of holes in dot are presented. Experimental results show that the Coulomb interaction between the holes does not affect the resonant frequency of the transitions. A good agreement between the theoretical and experimental results is shown.

2.
PLoS One ; 11(3): e0148110, 2016.
Article in English | MEDLINE | ID: mdl-26934214

ABSTRACT

Oxygen-glucose deprivation (OGD) leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs). Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging), increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM) partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX), also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery.


Subject(s)
Brain Ischemia/metabolism , Calcium/metabolism , Evoked Potentials/physiology , Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Animals , Brain Ischemia/physiopathology , Charybdotoxin/pharmacology , Chelating Agents/pharmacology , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Evoked Potentials/drug effects , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/drug effects , Hippocampus/physiopathology , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Mice , Neurons/drug effects , Neurons/metabolism
3.
Nanotechnology ; 27(7): 075705, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26775681

ABSTRACT

A set of Si1-x Sn x /Si(001) quantum wells (QWs) is grown by applying molecular beam epitaxy. The activation energies of holes in these QWs are studied by deep-level transient spectroscopy. It is observed that the holes activation energies increase monotonically with the Sn fraction (x). The valence band offset between pseudomorphic Si1-x Sn x and Si obeys the dependence ΔE(v) = 1.69x eV, while the offset between the average valence bands of unstrained Si1-x Sn x /Si heterojunction was deduced and obeys the dependence ΔE(v(av)) = 1.27x eV.

4.
Nanotechnology ; 26(24): 245301, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26011398

ABSTRACT

A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H2O2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology.

5.
Sci Technol Adv Mater ; 14(3): 035005, 2013 Jun.
Article in English | MEDLINE | ID: mdl-27877578

ABSTRACT

The negative differential capacitance (NDC) effect is observed on a titanium-oxide-silicon structure, formed on n-type silicon with embedded germanium quantum dots (QDs). The Ge QDs were grown by an Sb-mediated technique. The NDC effect was observed for temperatures below 200 K. We found that approximately six to eight electrons can be trapped in the valence band states of Ge QDs. We explain the NDC effect in terms of the emission of electrons from valence band states in the very narrow QD layer under reverse bias.

6.
Exp Neurol ; 197(2): 291-300, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16039651

ABSTRACT

Impaired regulation of intracellular calcium is thought to adversely affect synaptic plasticity and cognition in the aged brain. Comparing young (2-3 months) and aged (23-26 months) Fisher 344 rats, stratum radiatum-evoked CA1 field EPSPs were smaller and long-term potentiation (LTP) was diminished in aged hippocampal slices. Resting calcium, in presynaptic axonal terminals in the CA1 stratum radiatum area, was elevated in aged slices. Loading the slice with the calcium chelator, BAPTA-AM, depressed LTP in young slices, but enhanced this plasticity in old slices. Forty-five minutes following LTP-inducing high frequency stimulation, resting calcium levels were significantly increased in both young and old presynaptic terminals, and significantly reduced by pretreatment with BAPTA-AM. In vivo, intraperitoneal administration of BAPTA-AM prior to training in the reference memory version of the Morris water maze test, significantly improved the acquisition of spatial learning in aged animals, without a significant effect in young rats. These results support the hypothesis that increasing intracellular neuronal buffering power for calcium in aged rats ameliorates age-related impaired synaptic plasticity and learning.


Subject(s)
Aging/physiology , Calcium/metabolism , Learning/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Spatial Behavior/physiology , Analysis of Variance , Animals , Behavior, Animal , Chelating Agents/pharmacology , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/radiation effects , Hippocampus/cytology , In Vitro Techniques , Learning/drug effects , Maze Learning/drug effects , Maze Learning/physiology , Neuronal Plasticity/drug effects , Neurons/drug effects , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Rats , Rats, Inbred F344 , Reaction Time/drug effects , Spatial Behavior/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...