Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Infect Immun ; 90(2): e0043521, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34871039

ABSTRACT

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLß13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.


Subject(s)
Malaria, Falciparum , Malaria , Adult , Antibodies, Protozoan , Child , Erythrocytes , Humans , Indonesia , Membrane Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
3.
Mar Biotechnol (NY) ; 22(2): 207-219, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31981004

ABSTRACT

Cnidarians are one of the oldest known animal lineages (ca. 700 million years), with a unique envenomation apparatus to deliver a potent mixture of peptides and proteins. Some peptide toxins from cnidarian venom have proven therapeutic potential. Here, we use a transcriptomic/proteomic strategy to identify sequences with similarity to known venom protein families in the tentacles of the endemic Australian 'speckled anemone' (Oulactis sp.). Illumina RNASeq data were assembled de novo. Annotated sequences in the library were verified by cross-referencing individuals' transcriptomes or protein expression evidence from LC-MS/MS data. Sequences include pore-forming toxins, phospholipases, peptidases, neurotoxins (sodium and potassium channel modulators), cysteine-rich secretory proteins and defensins (antimicrobial peptides). Fewer than 4% of the sequences in the library occurred across the three individuals examined, demonstrating high sequence variability of an individual's arsenal. We searched for actinoporins in Oulactis sp. to assess sequence similarity to the only described toxins (OR-A and -G) for this genus and examined the domain architecture of venom-related peptides and proteins. The novel putative actinoporin of Oulactis sp. has a greater similarity to other species in the Actiniidae family than to O. orientalis. Venom-related sequences have an architecture that occurs in single, repeat or multi-domain combinations of venom-related (e.g. ShK-like) and non-venom (e.g. whey acid protein) domains. This study has produced the first transcriptomes for an endemic Australian sea anemone species and the genus Oulactis, while identifying nearly 400 novel venom-related peptides and proteins for future structural and functional analyses and venom evolution studies.


Subject(s)
Cnidarian Venoms/chemistry , Sea Anemones/chemistry , Transcriptome , Animals , Chromatography, Liquid , Cnidarian Venoms/genetics , Proteome/analysis , Sea Anemones/genetics , Tandem Mass Spectrometry
4.
FEBS J ; 286(1): 66-81, 2019 01.
Article in English | MEDLINE | ID: mdl-30521091

ABSTRACT

The mechanisms that underpin the formation, growth and composition of otoliths, the biomineralized stones in the inner ear of fish, are largely unknown, as only a few fish inner ear proteins have been reported. Using a partial transcriptome for the inner ear of black bream (Acanthopagrus butcheri), in conjunction with proteomic data, we discovered hundreds of previously unknown proteins in the otolith. This allowed us to develop hypotheses to explain the mechanisms of inorganic material supply and daily formation of growth bands. We further identified a likely protein mediator of crystal nucleation and an explanation for the apparent metabolic inertness of the otolith. Due to the formation of both daily and annual increments, otoliths are routinely employed as natural chronometers, being used for age and growth estimation, fisheries stock assessments, and the reconstruction of habitat use, movement, diet and the impacts of climate change. Our findings provide an unprecedented view of otolith molecular machinery, aiding in the interpretation of these essential archived data.


Subject(s)
Fish Proteins/metabolism , Fishes/metabolism , Otolithic Membrane/metabolism , Proteome/metabolism , Animals , Fish Proteins/genetics , Fishes/genetics , Transcriptome
5.
PLoS Biol ; 16(3): e2004328, 2018 03.
Article in English | MEDLINE | ID: mdl-29529020

ABSTRACT

Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria.


Subject(s)
Antigens, Protozoan/genetics , Antigens, Surface/genetics , Malaria/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Transcriptome , Gene Expression Regulation , Humans , Malaria/pathology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/metabolism , Sequence Analysis, RNA
6.
FEBS J ; 285(5): 848-870, 2018 03.
Article in English | MEDLINE | ID: mdl-29281179

ABSTRACT

Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. DATABASE: Gene expression data are available in the GEO databases under the accession number GSE91188.


Subject(s)
Gene Expression Regulation, Developmental , Malaria, Falciparum/parasitology , Parasitemia/parasitology , Plasmodium falciparum/growth & development , Quorum Sensing/genetics , Transcription, Genetic , Cell Death , Culture Media/pharmacology , Culture Media, Conditioned/pharmacology , Erythrocytes/parasitology , Erythrocytes/ultrastructure , Gene Ontology , Humans , In Vitro Techniques , Malaria, Falciparum/blood , Nutrients/pharmacology , Phenotype , Plasmodium falciparum/cytology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/biosynthesis , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...