Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998218

ABSTRACT

Wire crimping, a process commonly used in the automotive industry, is a solderless method for establishing electrical and mechanical connections between wire strands and terminals. The complexity of predicting the final shape of a crimped terminal and the imperative to minimize production costs indicate the use of advanced numerical methods. Such an approach requires a reliable phenomenological elasto-plastic constitutive model in which material behavior during the forming process is described. Copper alloy sheets, known for their ductility and strength, are commonly selected as terminal materials. Generally, sheet metals exhibit significant anisotropy in mechanical properties, and this phenomenon has not been sufficiently investigated experimentally for copper alloy sheets. Furthermore, the wire crimping process is conducted at higher velocities; therefore, the influence of the strain rate on the terminal material behavior has to be known. In this paper, the influence of the strain rate on the anisotropic elasto-plastic behavior of the copper alloy sheet CuFe2P is experimentally investigated. Tensile tests with strain rates of 0.0002 s-1, 0.2 s-1, 1 s-1, and 5.65 s-1 were conducted on sheet specimens with orientations of 0°, 45°, and 90° to the rolling direction. The influence of the strain rate on the orientation dependences of the stress-strain curve, elastic modulus, tensile strength, elongation, and Lankford coefficient was determined. Furthermore, the breaking angle at fracture and the inelastic heat fraction were determined for each considered specimen orientation. The considered experimental data were obtained by capturing the loading process using infrared thermography and digital image correlation techniques.

2.
Materials (Basel) ; 16(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37297309

ABSTRACT

Porosity in sintered materials negatively affects its fatigue properties. In investigating its influence, the application of numerical simulations reduces experimental testing, but they are computationally very expensive. In this work, the application of a relatively simple numerical phase-field (PF) model for fatigue fracture is proposed for estimation of the fatigue life of sintered steels by analysis of microcrack evolution. A model for brittle fracture and a new cycle skipping algorithm are used to reduce computational costs. A multiphase sintered steel, consisting of bainite and ferrite, is examined. Detailed finite element models of the microstructure are generated from high-resolution metallography images. Microstructural elastic material parameters are obtained using instrumented indentation, while fracture model parameters are estimated from experimental S-N curves. Numerical results obtained for monotonous and fatigue fracture are compared with data from experimental measurements. The proposed methodology is able to capture some important fracture phenomena in the considered material, such as the initiation of the first damage in the microstructure, the forming of larger cracks at the macroscopic level, and the total life in a high cycle fatigue regime. However, due to the adopted simplifications, the model is not suitable for predicting accurate and realistic crack patterns of microcracks.

3.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35889580

ABSTRACT

In this paper, a 3D phase-field model for brittle fracture is applied for analyzing the complex fracture patterns appearing during the Vickers indentation of fused silica. Although recent phase-field models for the fracture caused by the indentation loading have been verified by some simpler academic axis-symmetric examples, a proper validation of such models is still missing. In addition, heavy computational costs, and a complicated compression stress field under the indenter, which demands different energy decompositions, have been identified as the most important impediments for the successful application of the phase-field method for such problems. An adaptive strategy is utilized for reducing the computational costs, and some modifications are introduced, which enable an accurate simulation of the Vickers indentation fracture. Here, the fracture initiation ring outside the contact zone is detected by using different energy decompositions, and the dominant cone-crack formation under the Vickers indenter is observed. Different contact conditions are investigated. The proposed model is validated by experimental measurements, and a quantitative and qualitative comparison between experimental and numerical results is conducted.

SELECTION OF CITATIONS
SEARCH DETAIL
...