Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 245: 116147, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38640847

ABSTRACT

In this work, the electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed the in-situ generation of the PTAD (4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione) species from phenylurazole on demand for tyrosine electrolabeling. The chemoselectivity of the reaction was studied with another amino acid (lysine, Lys) and no changes in Lys were observed. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C), with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC- HRMS2). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction.


Subject(s)
Click Chemistry , Electrochemical Techniques , Tyrosine , Tyrosine/chemistry , Electrochemical Techniques/methods , Click Chemistry/methods , Chromatography, High Pressure Liquid/methods , Kinetics , Triazoles/chemistry , Triazoles/analysis , Spectrometry, Mass, Electrospray Ionization/methods
2.
Environ Sci Pollut Res Int ; 29(1): 222-235, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34342829

ABSTRACT

A composite material prepared by polymerization of ß-cyclodextrin (ß-CD) on the surface of natural hydroxyapatite using citric acid as cross linker, was employed as electrode material for the detection of Pb(II). Hydroxyapatite was obtained from bovine bones, following a three-step procedure including pre-calcination, chemical treatment with (NH4)2HPO4, and calcination. The structure and morphology of the pristine hydroxyapatite (NHAPP0.5) and its functionalized counterpart (NHAPp0.5-CA-ß-CD) were examined using XRD, FTIR, and SEM. Upon deposition as thin film on a glassy carbon electrode (GCE), the ion exchange ability of NHAPp0.5-CA-ß-CD was exploited to elaborate a sensitive sensor for the detection of lead. The electroanalytical procedure was based on the chemical accumulation of Pb(II) ions under open-circuit conditions, followed by the detection of the preconcentrated species using differential pulse anodic stripping voltammetry. The reproducibility of the proposed method, based on a series of 8 measurements in a solution containing 2 µM Pb(II) gave a coefficient of variation of 1.27%. Significant parameters that can affect the stripping response of Pb(II) were optimized, leading to a linear calibration curve for lead in the concentration range of 2 × 10-8 mol L-1 - 20 × 10-8 mol L-1 (R2 = 0.998). The detection limit (3S/m) and the sensitivity of the proposed sensor were 5.06 × 10-10 mol L-1 and 100.80 µA.µM-1, respectively. The interfering effect of several ions expected to affect the determination of lead was evaluated, and the proposed sensor was successfully applied in the determination of Pb(II) ions in spring water, well water, river water and tap water samples.


Subject(s)
Durapatite , beta-Cyclodextrins , Animals , Cattle , Electrodes , Lead , Polymerization , Reproducibility of Results
3.
Mikrochim Acta ; 188(2): 36, 2021 01 09.
Article in English | MEDLINE | ID: mdl-33420843

ABSTRACT

An amperometric sensor based on an inkjet-printed graphene electrode (IPGE) modified with amine-functionalized montmorillonite (Mt-NH2) for the electroanalysis and quantification of gentisic acid (GA) has been developed. The organoclay used as IPGE modifier was prepared and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, CHN elemental analysis, and thermogravimetry. The electrochemical features of the Mt-NH2/IPGE sensor were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibited charge selectivity ability which was exploited for the electrochemical oxidation of GA. The GA amperometric response was high in acidic medium (Brinton-Robinson buffer, pH 2) due to favorable interactions between the protonated amine groups and the negatively charged GA. Kinetic studies were also performed by cyclic voltammetry, and the obtained electron transfer rate constant of 11.3 s-1 indicated a fast direct electron transfer rate of GA to the electrode. An approach using differential pulse voltammetry was then developed for the determination of GA (at + 0.233 V vs. a pseudo Ag/Ag+ reference electrode), and under optimized conditions, the sensor showed high sensitivity, a wide working linear range from 1 to 21 µM (R2 = 0.999), and a low detection limit of 0.33 µM (0.051 ± 0.01 mg L-1). The proposed sensor was applied to quantify GA in a commercial red wine sample. The simple and rapid method developed using a cheap clay material could be employed for the determination of various phenolic acids.


Subject(s)
Bentonite/chemistry , Gentisates/analysis , Graphite/chemistry , Electrochemical Techniques/methods , Electrodes , Gentisates/chemistry , Limit of Detection , Oxidation-Reduction , Printing , Wine/analysis
4.
Talanta ; 222: 121550, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33167253

ABSTRACT

The present work reports the development of a low-cost and reliable differential pulse adsorptive stripping voltammetric procedure for the detection of diquat (DQ) in water, using a glassy carbon electrode (GCE) modified with ß-cyclodextrin (ß-CD)/Natural hydroxyapatite (NHAPP0.5) composite material. The structural characterization of the natural hydroxyapatite and its modified counterpart was achieved using several techniques including X-ray Diffraction, Fourier Transform Infrared Spectroscopy and Thermal Analysis. By comparing the physico-chemical characteristics of hydroxyapatite material before and after reaction with ß-CD, all of these techniques have demonstrated the successful grafting process of ß-CD on the surface hydroxyl groups of hydroxyapatite, using citric acid (CA) as cross linker. The electrochemical features and permeability properties of the obtained materials, coated as thin film onto the GCE surface were characterized using ion exchange multisweep cyclic voltammetry. The ß-cyclodextrin modified hydroxyapatite (NHAPp0.5-CA-ß-CD) was evaluated as electrode modifier for DQ sensing. The electroanalytical procedure followed two steps: the chemical preconcentration of DQ under open-circuit conditions, and the differential pulse voltammetric detection of the preconcentrated pesticide. Various experimental parameters likely to influence the sensibility of electrode were fully investigated and optimized. A linear calibration curve for DQ in the concentration range of 5 × 10-8 - 4.5 × 10-7 mol L-1 was obtained at GCE/NHAPp0.5-CA-ß-CD, with a detection limit of 4.66 × 10-10 mol L-1 (DL = 3S/M). The proposed method was successfully applied to the determination of DQ in spring water.

5.
Talanta ; 147: 547-55, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26592645

ABSTRACT

This work describes the development of a low-cost and reliable adsorptive stripping voltammetric method for the detection of PNP in water. Organoclays were prepared by intercalation in various loading amounts of cetyltrimethylammonium ions (CTA(+)) in the interlayer space of a smectite-type clay mineral. Their structural characterization was achieved using several techniques including X-ray diffraction (XRD), N2 adsorption-desorption (BET method) and Fourier Transform Infrared spectroscopy (FTIR) that confirmed the intercalation process and the presence of the surfactant ions within the clay mineral layers. Using [Fe(CN)6](3-) and [Ru(NH3)6](3+) as redox probes, the surface charge and the permeability of the starting clay mineral and its modified counterparts were assessed by multisweep cyclic voltammetry, when these materials were coated on the surface of a glassy carbon electrode (GCE). In comparison with the bare GCE, the organoclay modified electrodes exhibited more sensitive response towards the reduction of paranitrophenol (PNP). Under optimized conditions, a calibration curve was obtained in the concentration range from 0.2 to 5.2µmolL(-1); leading to a detection limit of 3.75×10(-8)molL(-1) (S/N=3). After the study of some interfering species on the electrochemical response of PNP, the developed sensor was successfully applied to the electroanalytical quantification of the same pollutant in spring water.

6.
Talanta ; 103: 337-43, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23200396

ABSTRACT

A natural Cameroonian smectite-type clay (SaNa) was exchanged with cationic surfactants, namely cetyltrimethylammonium (CTA) and didodecyldimethyl ammonium (DDA) modifying its physico-chemical properties. The resulting organoclays that have higher adsorption capacity for mesotrione than the pristine SaNa clay, have been used as modifiers of glassy carbon electrode for the electrochemical detection of this herbicide by square wave voltammetry. The stripping performances of SaNa, SaCTA and SaDDA modified electrodes were therefore evaluated and the experimental parameters were optimized. SaDDA gives the best results in deoxygenated acetate buffer solution (pH 6.0) after 2 min accumulation under open circuit conditions. Under optimal conditions, the reduction current is proportional to mesotrione concentration in the range from 0.25 to 2.5 µM with a detection limit of 0.26 µM. The fabricated electrode was also applied for the commercial formulation CALLISTO, used in European maize market.


Subject(s)
Aluminum Silicates/chemistry , Carbon/chemistry , Cyclohexanones/analysis , Electrochemistry , Glass/chemistry , Herbicides/analysis , Clay , Cyclohexanones/chemistry , Electrodes , Herbicides/chemistry , Hydrogen-Ion Concentration , X-Ray Diffraction
7.
Talanta ; 74(4): 489-97, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18371666

ABSTRACT

In this work, a thiol functionalized-clay was prepared by the covalent grafting of 3-mercaptopropyltrimethoxysilane (MPTMS) onto the surface of a natural smectite clay mineral originating from Cameroon. Effectiveness of the grafting process and properties of the resulting hybrid material were studied by various physico-chemical techniques, such as Fourier transform infrared (FTIR) spectroscopy, N(2) adsorption-desorption experiments (surface area measurements by the BET method) and thermal gravimetric analysis (TGA) coupled with mass spectrometry (MS). Sorption of methylene blue (MB), an electroactive cationic dye, was investigated for both the raw clay and its modified counterpart, as a function of shaking time, adsorbate concentration and pH, through batch experiments. A significant enhancement of the adsorption capacity towards MB was observed with the clay bearing thiol groups in comparison with the pristine one. The obtained sorption data matched the Langmuir isotherm model, from which it appeared that the organoclay adsorbed MB at a maximal loading of 1.04mmolg(-1), while the natural clay displayed a significantly poorer performance (0.31mmolg(-1)). The uptake of MB by the modified clay was found to be highly affected by pH, the cationic dye being more effectively adsorbed in alkaline medium. The possible use of the thiol functionalized-clay as electrode modifier for MB sensing purposes was then evaluated by means of carbon paste electrodes, using cyclic voltammetry. A calibration curve was obtained in the concentration range from 1x10(-6) to 1.4x10(-5)molL(-1), with a detection limit of 4x10(-7)molL(-1)(signal/noise=3).

SELECTION OF CITATIONS
SEARCH DETAIL
...