Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
In Silico Pharmacol ; 12(1): 20, 2024.
Article in English | MEDLINE | ID: mdl-38559706

ABSTRACT

Amyotrophic lateral sclerosis (ALS), a complicated neurodegenerative disorder affected by hereditary and environmental variables, is a condition. In this study, the genetic makeup of ALS is investigated, with a focus on the SOD1 gene's single-nucleotide polymorphisms (SNPs) and their ability to affect disease risk. Eleven high-risk missense variations that may impair the functionality of the SOD1 protein were discovered after a thorough examination of SNPs in the SOD1 gene. These mutations were chosen using a variety of prediction approaches, highlighting their importance in the aetiology of ALS. Notably, it was discovered that the stability of the SOD1 wild-type protein structure was compromised by the G38R and G42D SOD1 variants. Additionally, Edaravone, a possible ALS medication, showed a greater affinity for binding mutant SOD1 structures, pointing to potential personalised treatment possibilities. The high-risk SNPs discovered in this investigation seem to have functional effects, especially on the stability of proteins and their interactions with other molecules. This study clarifies the complex genetics of ALS and offers insights into how these genetic variations may affect the effectiveness of therapeutic interventions, particularly in the context of edaravone. In this study advances our knowledge of the genetic mechanisms causing ALS vulnerability and prospective therapeutic strategies. Future studies are necessary to confirm these results and close the gap between individualised clinical applications and improved ALS care.

2.
Food Sci Nutr ; 11(10): 5701-5735, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823149

ABSTRACT

Aging and aging-related chronic disorders are one of the principal causes of death worldwide. The prevalence of these disorders is increasing gradually and globally. Considering this unwavering acceleration of the global burden, seeking alternatives to traditional medication to prevent the risk of aging disorders is needed. Among them, lycopene, a carotenoid, is abundant in many fruits and vegetables, including tomatoes, grapefruits, and watermelons, and it has a unique chemical structure to be a potent antioxidant compound. This nutraceutical also possesses several anti-aging actions, including combating aging biomarkers and ameliorating several chronic disorders. However, no systematic evaluation has yet been carried out that can comprehensively elucidate the effectiveness of lycopene in halting the course of aging and the emergence of chronic diseases linked to aging. This review, therefore, incorporates previous pre-clinical, clinical, and epidemiological studies on lycopene to understand its potency in treating aging disorders and its role as a mimic of caloric restriction. Lycopene-rich foods are found to prevent or attenuate aging disorders in various research. Based on the evidence, this review suggests the clinical application of lycopene to improve human health and alleviate the prevalence of aging and aging disorders.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985867

ABSTRACT

In the current scenario, the rising concentration of heavy metals (HMs) due to anthropogenic activities is a severe problem. Plants are very much affected by HM pollution as well as other abiotic stress such as salinity and drought. It is very important to fulfil the nutritional demands of an ever-growing population in these adverse environmental conditions and/or stresses. Remediation of HM in contaminated soil is executed through physical and chemical processes which are costly, time-consuming, and non-sustainable. The application of nanobionics in crop resilience with enhanced stress tolerance may be the safe and sustainable strategy to increase crop yield. Thus, this review emphasizes the impact of nanobionics on the physiological traits and growth indices of plants. Major concerns and stress tolerance associated with the use of nanobionics are also deliberated concisely. The nanobionic approach to plant physiological traits and stress tolerance would lead to an epoch of plant research at the frontier of nanotechnology and plant biology.

4.
Front Plant Sci ; 13: 957735, 2022.
Article in English | MEDLINE | ID: mdl-36420041

ABSTRACT

Nitric oxide (NO) has received much attention since it can boost plant defense mechanisms, and plenty of studies have shown that exogenous NO improves salinity tolerance in plants. However, because of the wide range of experimental settings, it is difficult to assess the administration of optimal dosages, frequency, timing, and method of application and the overall favorable effects of NO on growth and yield improvements. Therefore, we conducted a meta-analysis to reveal the exact physiological and biochemical mechanisms and to understand the influence of plant-related or method-related factors on NO-mediated salt tolerance. Exogenous application of NO significantly influenced biomass accumulation, growth, and yield irrespective of salinity stress. According to this analysis, seed priming and foliar pre-treatment were the most effective methods of NO application to plants. Moreover, one-time and regular intervals of NO treatment were more beneficial for plant growth. The optimum concentration of NO ranges from 0.1 to 0.2 mM, and it alleviates salinity stress up to 150 mM NaCl. Furthermore, the beneficial effect of NO treatment was more pronounced as salinity stress was prolonged (>21 days). This meta-analysis showed that NO supplementation was significantly applicable at germination and seedling stages. Interestingly, exogenous NO treatment boosted plant growth most efficiently in dicots. This meta-analysis showed that exogenous NO alleviates salt-induced oxidative damage and improves plant growth and yield potential by regulating osmotic balance, mineral homeostasis, photosynthetic machinery, the metabolism of reactive oxygen species, and the antioxidant defense mechanism. Our analysis pointed out several research gaps, such as lipid metabolism regulation, reproductive stage performance, C4 plant responses, field-level yield impact, and economic profitability of farmers in response to exogenous NO, which need to be evaluated in the subsequent investigation.

5.
Plant Physiol Biochem ; 192: 186-195, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36244191

ABSTRACT

Strigolactones (SLs) have been implicated in various developmental processes of the plant, including the response against several abiotic stresses. It is well known as a class of endogenous phytohormones that regulates shoot branching, secondary growth and root morphology. This hormone facilitates plants in responding to nitrogen and phosphorus starvation by shaping the above and below ground structural design. SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Heavy metals (HMs) in soil are considered a serious environmental problem that causes various harmful effects on plants. SLs along with other plant hormones imply the role in plant architecture is far from being fully understood. Strategy to remove/remediation of HMs from the soil with the help of SLs has not been defined yet. Therefore, the present review aims to comprehensively provide an overview of SLs role in fine-tuning plant architectures, relation with other plant hormones under abiotic stress, and remediation of HMs contaminated soil using SLs.

6.
Molecules ; 27(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296438

ABSTRACT

ß-cyclocitral (ßCC), a main apocarotenoid of ß-carotene, increases plants' resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, ßCC marked as stress signals that accrue under adverse ecological conditions. ßCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of ßCC. We emphasize the ßCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research.


Subject(s)
Diterpenes , beta Carotene , beta Carotene/metabolism , Plants/metabolism , Diterpenes/metabolism , Aldehydes/metabolism , Stress, Physiological , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...