Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18500, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323732

ABSTRACT

The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ligands , Nucleocapsid Proteins/genetics , RNA/metabolism , Antiviral Agents/pharmacology , Protein Binding
2.
Sci Rep ; 12(1): 4168, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264710

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative condition featured by motor dysfunction, death of midbrain dopaminergic neurons and accumulation of α-synuclein (αSyn) aggregates. Growing evidence suggests that PD diagnosis happens late in the disease progression and that the pathology may originate much earlier in the enteric nervous system (ENS) before advancing to the brain, via autonomic fibers. It was recently described that a specific cell type from the gut epithelium named enteroendocrine cells (EECs) possess many neuron-like properties including αSyn expression. By facing the gut lumen and being directly connected with αSyn-containing enteric neurons in a synaptic manner, EECs form a neural circuit between the gastrointestinal tract and the ENS, thereby being a possible key player in the outcome of PD in the gut. We have characterized the progression and the cellular mechanisms involved in αSyn pre-formed fibrils (PFFs) transfer from EECs to neuronal cells. We show that brain organoids efficiently internalize αSyn PFF seeds which triggers the formation of larger intracellular inclusions. In addition, in the enteroendocrine cell line STC-1 and in the neuronal cell line SH-SY5Y, αSyn PFFs induced intracellular calcium (Ca2+) oscillations on an extracellular Ca2+ source-dependent manner and triggered αSyn fibrils internalization by endocytosis. We characterized the spread of αSyn PFFs from enteroendocrine to neuronal cells and showed that this process is dependent on physical cell-to-cell contact and on Rab35 GTPase. Lastly, inhibition of Rab35 increases the clearance of αSyn fibrils by redirecting them to the lysosomal compartment. Therefore, our results reveal mechanisms that contribute to the understanding of how seeded αSyn fibrils promote the progression of αSyn pathology from EECs to neuronal cells shifting the focus of PD etiology to the ENS.


Subject(s)
Parkinson Disease , Synucleinopathies , alpha-Synuclein , rab GTP-Binding Proteins , Brain/metabolism , Dopaminergic Neurons/metabolism , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , rab GTP-Binding Proteins/metabolism
3.
iScience ; 24(8): 102841, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34381968

ABSTRACT

Current studies estimate that 1-3% of females with unexplained intellectual disability (ID) present de novo splice site, nonsense, frameshift, or missense mutations in the DDX3X protein (DEAD-Box Helicase 3 X-Linked). However, the cellular and molecular mechanisms by which DDX3X mutations impair brain development are not fully comprehended. Here, we show that the ID-linked missense mutation L556S renders DDX3X prone to aggregation. By using a combination of biophysical assays and imaging approaches, we demonstrate that this mutant assembles solid-like condensates and amyloid-like fibrils. Although we observed greatly reduced expression of the mutant allele in a patient who exhibits skewed X inactivation, this appears to be enough to sequestrate healthy proteins into solid-like ectopic granules, compromising cell function. Therefore, our data suggest ID-linked DDX3X L556S mutation as a disorder arising from protein misfolding and aggregation.

4.
Free Radic Biol Med ; 156: 207-216, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32615144

ABSTRACT

Sulfenic acids are the primary product of thiol oxidation by hydrogen peroxide and other oxidants. Several aspects of sulfenic acid formation through thiol oxidation were established recently. In contrast, the reduction of sulfenic acids is still scarcely investigated. Here, we characterized the kinetics of the reduction of sulfenic acids by ascorbate in several proteins. Initially, we described the crystal structure of our model protein (Tsa2-C170S). There are other Tsa2 structures in distinct redox states in public databases and all of them are decamers, with the peroxidatic cysteine very accessible to reductants, convenient features to investigate kinetics. We determined that the reaction between Tsa2-C170S-Cys-SOH and ascorbate proceeded with a rate constant of 1.40 ± 0.08 × 103 M-1 s-1 through a competition assay developed here, employing 2,6-dichlorophenol-indophenol (DCPIP). A series of peroxiredoxin enzymes (Prx6 sub family) were also analyzed by this competition assay and we observed that the reduction of sulfenic acids by ascorbate was in the 0.4-2.2 × 103 M-1 s-1 range. We also evaluated the same reaction on glyceraldehyde 3-phosphate dehydrogenase and papain, as the reduction of their sulfenic acids by ascorbate were reported previously. Once again, the rate constants are in the 0.4-2.2 × 103 M-1 s-1 range. We also analyzed the reduction of Tsa2-C170S-SOH by ascorbate by a second, independent method, following hydrogen peroxide reduction through a specific electrode (ISO-HPO-2, World Precision Instruments) and employing a bi-substrate, steady state approach. The kcat/KMAsc was 7.4 ± 0.07 × 103 M-1 s-1, which was in the same order of magnitude as the value obtained by the DCPIP competition assay. In conclusion, our data indicates that reduction of sulfenic acid in various proteins proceed at moderate rate and probably this reaction is more relevant in biological systems where ascorbate concentrations are high.


Subject(s)
Sulfenic Acids , Sulfhydryl Compounds , Cysteine/metabolism , Hydrogen Peroxide , Oxidation-Reduction , Peroxiredoxins/metabolism
5.
Biotechnol Biofuels ; 11: 223, 2018.
Article in English | MEDLINE | ID: mdl-30127853

ABSTRACT

BACKGROUND: Arabinoxylan is an abundant polysaccharide in industrially relevant biomasses such as sugarcane, corn stover and grasses. However, the arabinofuranosyl di-substitutions that decorate the xylan backbone are recalcitrant to most known arabinofuranosidases (Abfs). RESULTS: In this work, we identified a novel GH51 Abf (XacAbf51) that forms trimers in solution and can cope efficiently with both mono- and di-substitutions at terminal or internal xylopyranosyl units of arabinoxylan. Using mass spectrometry, the kinetic parameters of the hydrolysis of 33-α-l-arabinofuranosyl-xylotetraose and 23,33-di-α-l-arabinofuranosyl-xylotetraose by XacAbf51 were determined, demonstrating the capacity of this enzyme to cleave arabinofuranosyl linkages of internal mono- and di-substituted xylopyranosyl units. Complementation studies of fungal enzyme cocktails with XacAbf51 revealed an increase of up to 20% in the release of reducing sugars from pretreated sugarcane bagasse, showing the biotechnological potential of a generalist GH51 in biomass saccharification. To elucidate the structural basis for the recognition of internal di-substitutions, the crystal structure of XacAbf51 was determined unveiling the existence of a pocket strategically arranged near to the - 1 subsite that can accommodate a second arabinofuranosyl decoration, a feature not described for any other GH51 Abf structurally characterized so far. CONCLUSIONS: In summary, this study reports the first kinetic characterization of internal di-substitution release by a GH51 Abf, provides the structural basis for this activity and reveals a promising candidate for industrial processes involving plant cell wall depolymerization.

6.
Sci Rep ; 8(1): 11988, 2018 08 10.
Article in English | MEDLINE | ID: mdl-30097648

ABSTRACT

Adenosine Kinase (ADK) regulates the cellular levels of adenosine (ADO) by fine-tuning its metabolic clearance. The transfer of γ-phosphate from ATP to ADO by ADK involves regulation by the substrates and products, as well as by Mg2+ and inorganic phosphate. Here we present new crystal structures of mouse ADK (mADK) binary (mADK:ADO; 1.2 Å) and ternary (mADK:ADO:ADP; 1.8 Å) complexes. In accordance with the structural demonstration of ADO occupancy of the ATP binding site, kinetic studies confirmed a competitive model of auto-inhibition of ADK by ADO. In the ternary complex, a K+ ion is hexacoordinated between loops adjacent to the ATP binding site, where Asp310 connects the K+ coordination sphere to the ATP binding site through an anion hole structure. Nuclear Magnetic Resonance 2D 15N-1H HSQC experiments revealed that the binding of K+ perturbs Asp310 and residues of adjacent helices 14 and 15, engaging a transition to a catalytically productive structure. Consistent with the structural data, the mutants D310A and D310P are catalytically deficient and loose responsiveness to K+. Saturation Transfer Difference spectra of ATPγS provided evidence for an unfavorable interaction of the mADK D310P mutant for ATP. Reductions in K+ concentration diminish, whereas increases enhance the in vitro activity of mADK (maximum of 2.5-fold; apparent Kd = 10.4 mM). Mechanistically, K+ increases the catalytic turnover (Kcat) but does not affect the affinity of mADK for ADO or ATP. Depletion of intracellular K+ inhibited, while its restoration was accompanied by a full recovery of cellular ADK activity. Together, this novel dataset reveals the molecular basis of the allosteric activation of ADK by K+ and highlights the role of ADK in connecting depletion of intracellular K+ to the regulation of purine metabolism.


Subject(s)
Adenosine Kinase/metabolism , Metabolic Networks and Pathways , Potassium/metabolism , Purines/metabolism , Adenosine Kinase/chemistry , Adenosine Kinase/genetics , Amino Acids , Binding Sites , Enzyme Activation , Kinetics , Magnetic Resonance Imaging , Molecular Conformation , Mutation , Phosphorylation , Protein Binding , Purines/chemistry , Structure-Activity Relationship
7.
Biochim Biophys Acta Proteins Proteom ; 1866(4): 569-579, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29454992

ABSTRACT

The Amazon region holds most of the biological richness of Brazil. Despite their ecological and biotechnological importance, studies related to microorganisms from this region are limited. Metagenomics leads to exciting discoveries, mainly regarding non-cultivable microorganisms. Herein, we report the discovery of a novel ß-glucosidase (glycoside hydrolase family 1) gene from a metagenome from Lake Poraquê in the Amazon region. The gene encodes a protein of 52.9 kDa, named AmBgl-LP, which was recombinantly expressed in Escherichia coli and biochemically and structurally characterized. Although AmBgl-LP hydrolyzed the synthetic substrate p-nitrophenyl-ß-d-glucopyranoside (pNPßG) and the natural substrate cellobiose, it showed higher specificity for pNPßG (kcat/Km = 6 s-1·mM-1) than cellobiose (kcat/Km = 0.6 s-1·mM-1). AmBgl-LP showed maximum activity at 40 °C and pH 6.0 when pNPßG was used as the substrate. Glucose is a competitive inhibitor of AmBgl-LP, presenting a Ki of 14 mM. X-ray crystallography and Small Angle X-ray Scattering were used to determine the AmBgl-LP three-dimensional structure and its oligomeric state. Interestingly, despite sharing similar active site architecture with other structurally characterized GH1 family members which are monomeric, AmBgl-LP forms stable dimers in solution. The identification of new GH1 members by metagenomics might extend our understanding of the molecular mechanisms and diversity of these enzymes, besides enabling us to survey their industrial applications.


Subject(s)
Lakes/microbiology , Metagenome , Water Microbiology , beta-Glucosidase/chemistry , Brazil , beta-Glucosidase/genetics , beta-Glucosidase/metabolism
8.
Sci Rep ; 6: 23776, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27029646

ABSTRACT

Psychrophilic enzymes evolved from a plethora of structural scaffolds via multiple molecular pathways. Elucidating their adaptive strategies is instrumental to understand how life can thrive in cold ecosystems and to tailor enzymes for biotechnological applications at low temperatures. In this work, we used X-ray crystallography, in solution studies and molecular dynamics simulations to reveal the structural basis for cold adaptation of the GH1 ß-glucosidase from Exiguobacterium antarcticum B7. We discovered that the selective pressure of low temperatures favored mutations that redesigned the protein surface, reduced the number of salt bridges, exposed more hydrophobic regions to the solvent and gave rise to a tetrameric arrangement not found in mesophilic and thermophilic homologues. As a result, some solvent-exposed regions became more flexible in the cold-adapted tetramer, likely contributing to enhance enzymatic activity at cold environments. The tetramer stabilizes the native conformation of the enzyme, leading to a 10-fold higher activity compared to the disassembled monomers. According to phylogenetic analysis, diverse adaptive strategies to cold environments emerged in the GH1 family, being tetramerization an alternative, not a rule. These findings reveal a novel strategy for enzyme cold adaptation and provide a framework for the semi-rational engineering of ß-glucosidases aiming at cold industrial processes.


Subject(s)
Adaptation, Physiological/genetics , Bacterial Proteins/chemistry , Firmicutes/enzymology , Phylogeny , beta-Glucosidase/chemistry , Aquatic Organisms , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Cold Temperature , Crystallography, X-Ray , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Firmicutes/classification , Firmicutes/genetics , Gene Expression , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Dynamics Simulation , Protein Domains , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics , beta-Glucosidase/genetics , beta-Glucosidase/metabolism
9.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 11): 1116-9, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19923730

ABSTRACT

Nucleoside diphosphate kinases (NDKs; EC 2.7.4.6) play an essential role in the synthesis of nucleotides from intermediates in the salvage pathway in all parasitic trypanosomatids and their structural studies will be instrumental in shedding light on the biochemical machinery involved in the parasite life cycle and host-parasite interactions. In this work, NDKb from Leishmania major was overexpressed in Escherichia coli, purified to homogeneity and crystallized using the sitting-drop vapour-diffusion method. The NDK crystal diffracted to 2.2 angstrom resolution and belonged to the trigonal crystal system, with unit-cell parameters a = 114.2, c = 93.9 angstrom. Translation-function calculations yielded an unambiguous solution in the enantiomorphic space group P3(2)21.


Subject(s)
Leishmania major/enzymology , NM23 Nucleoside Diphosphate Kinases/chemistry , Protozoan Proteins/chemistry , Amino Acid Sequence , Animals , Crystallization , Crystallography, X-Ray , Molecular Sequence Data , NM23 Nucleoside Diphosphate Kinases/genetics , Protozoan Proteins/genetics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...