Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5792, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37737204

ABSTRACT

Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed "in natura".


Subject(s)
Anthocyanins , Arabidopsis , Humans , Arabidopsis/genetics , Diploidy , Machine Learning , Polyploidy , Seasons
2.
Diagnostics (Basel) ; 11(10)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34679619

ABSTRACT

We developed a computer-aided detection (CADe) system to detect and localize colorectal lesions by modifying You-Only-Look-Once version 3 (YOLO v3) and evaluated its performance in two different settings. The test dataset was obtained from 20 randomly selected patients who underwent endoscopic resection for 69 colorectal lesions at the Jikei University Hospital between June 2017 and February 2018. First, we evaluated the diagnostic performances using still images randomly and automatically extracted from video recordings of the entire endoscopic procedure at intervals of 5 s, without eliminating poor quality images. Second, the latency of lesion detection by the CADe system from the initial appearance of lesions was investigated by reviewing the videos. A total of 6531 images, including 662 images with a lesion, were studied in the image-based analysis. The AUC, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 0.983, 94.6%, 95.2%, 68.8%, 99.4%, and 95.1%, respectively. The median time for detecting colorectal lesions measured in the lesion-based analysis was 0.67 s. In conclusion, we proved that the originally developed CADe system based on YOLO v3 could accurately and instantaneously detect colorectal lesions using the test dataset obtained from videos, mitigating operator selection biases.

3.
J Gastroenterol ; 56(8): 746-757, 2021 08.
Article in English | MEDLINE | ID: mdl-34218329

ABSTRACT

BACKGROUND: We have developed the computer-aided detection (CADe) system using an original deep learning algorithm based on a convolutional neural network for assisting endoscopists in detecting colorectal lesions during colonoscopy. The aim of this study was to clarify whether adenoma miss rate (AMR) could be reduced with CADe assistance during screening and surveillance colonoscopy. METHODS: This study was a multicenter randomized controlled trial. Patients aged 40 to 80 years who were referred for colorectal screening or surveillance at four sites in Japan were randomly assigned at a 1:1 ratio to either the "standard colonoscopy (SC)-first group" or the "CADe-first group" to undergo a back-to-back tandem procedure. Tandem colonoscopies were performed on the same day for each participant by the same endoscopist in a preassigned order. All polyps detected in each pass were histopathologically diagnosed after biopsy or resection. RESULTS: A total of 358 patients were enrolled and 179 patients were assigned to the SC-first group or CADe-first group. The AMR of the CADe-first group was significantly lower than that of the SC-first group (13.8% vs. 36.7%, P < 0.0001). Similar results were observed for the polyp miss rate (14.2% vs. 40.6%, P < 0.0001) and sessile serrated lesion miss rate (13.0% vs. 38.5%, P = 0.03). The adenoma detection rate of CADe-assisted colonoscopy was 64.5%, which was significantly higher than that of standard colonoscopy (53.6%; P = 0.036). CONCLUSION: Our study results first showed a reduction in the AMR when assisting with CADe based on deep learning in a multicenter randomized controlled trial.


Subject(s)
Artificial Intelligence/standards , Colonoscopy/instrumentation , Robotic Surgical Procedures/statistics & numerical data , Adenoma/pathology , Adult , Aged , Aged, 80 and over , Artificial Intelligence/statistics & numerical data , Colonoscopy/methods , Colonoscopy/statistics & numerical data , Early Detection of Cancer/methods , Female , Humans , Japan , Male , Middle Aged , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...