Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 17(1): 972, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27884102

ABSTRACT

BACKGROUND: Fatty acid type in beef can be detrimental to human health and has received considerable attention in recent years. The aim of this study was to identify differentially expressed genes in longissimus thoracis muscle of 48 Nellore young bulls with extreme phenotypes for fatty acid composition of intramuscular fat by RNA-seq technique. RESULTS: Differential expression analyses between animals with extreme phenotype for fatty acid composition showed a total of 13 differentially expressed genes for myristic (C14:0), 35 for palmitic (C16:0), 187 for stearic (C18:0), 371 for oleic (C18:1, cis-9), 24 for conjugated linoleic (C18:2 cis-9, trans11, CLA), 89 for linoleic (C18:2 cis-9,12 n6), and 110 genes for α-linolenic (C18:3 n3) fatty acids. For the respective sums of the individual fatty acids, 51 differentially expressed genes for saturated fatty acids (SFA), 336 for monounsaturated (MUFA), 131 for polyunsaturated (PUFA), 92 for PUFA/SFA ratio, 55 for ω3, 627 for ω6, and 22 for ω6/ω3 ratio were identified. Functional annotation analyses identified several genes associated with fatty acid metabolism, such as those involved in intra and extra-cellular transport of fatty acid synthesis precursors in intramuscular fat of longissimus thoracis muscle. Some of them must be highlighted, such as: ACSM3 and ACSS1 genes, which work as a precursor in fatty acid synthesis; DGAT2 gene that acts in the deposition of saturated fat in the adipose tissue; GPP and LPL genes that support the synthesis of insulin, stimulating both the glucose synthesis and the amino acids entry into the cells; and the BDH1 gene, which is responsible for the synthesis and degradation of ketone bodies used in the synthesis of ATP. CONCLUSION: Several genes related to lipid metabolism and fatty acid composition were identified. These findings must contribute to the elucidation of the genetic basis to improve Nellore meat quality traits, with emphasis on human health. Additionally, it can also contribute to improve the knowledge of fatty acid biosynthesis and the selection of animals with better nutritional quality.


Subject(s)
Fatty Acids/metabolism , Muscle, Skeletal/metabolism , Transcriptome , Animals , Cattle , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Metabolic Networks and Pathways , Molecular Sequence Annotation , Phenotype
2.
PLoS One ; 11(6): e0157845, 2016.
Article in English | MEDLINE | ID: mdl-27359122

ABSTRACT

The objective of this study was to identify genomic regions that are associated with meat quality traits in the Nellore breed. Nellore steers were finished in feedlots and slaughtered at a commercial slaughterhouse. This analysis included 1,822 phenotypic records of tenderness and 1,873 marbling records. After quality control, 1,630 animals genotyped for tenderness, 1,633 animals genotyped for marbling, and 369,722 SNPs remained. The results are reported as the proportion of variance explained by windows of 150 adjacent SNPs. Only windows with largest effects were considered. The genomic regions were located on chromosomes 5, 15, 16 and 25 for marbling and on chromosomes 5, 7, 10, 14 and 21 for tenderness. These windows explained 3,89% and 3,80% of the additive genetic variance for marbling and tenderness, respectively. The genes associated with the traits are related to growth, muscle development and lipid metabolism. The study of these genes in Nellore cattle is the first step in the identification of causal mutations that will contribute to the genetic evaluation of the breed.


Subject(s)
Genome-Wide Association Study/methods , Quantitative Trait Loci , Red Meat , Animals , Cattle , Female , Male , Polymorphism, Single Nucleotide , Selective Breeding
3.
Genet Sel Evol ; 48: 7, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26830208

ABSTRACT

BACKGROUND: The objective of this study was to evaluate the accuracy of genomic predictions for rib eye area (REA), backfat thickness (BFT), and hot carcass weight (HCW) in Nellore beef cattle from Brazilian commercial herds using different prediction models. METHODS: Phenotypic data from 1756 Nellore steers from ten commercial herds in Brazil were used. Animals were offspring of 294 sires and 1546 dams, reared on pasture, feedlot finished, and slaughtered at approximately 2 years of age. All animals were genotyped using a 777k Illumina Bovine HD SNP chip. Accuracy of genomic predictions of breeding values was evaluated by using a 5-fold cross-validation scheme and considering three models: Bayesian ridge regression (BRR), Bayes C (BC) and Bayesian Lasso (BL), and two types of response variables: traditional estimated breeding value (EBV), and phenotype adjusted for fixed effects (Y*). RESULTS: The prediction accuracies achieved with the BRR model were equal to 0.25 (BFT), 0.33 (HCW) and 0.36 (REA) when EBV was used as response variable, and 0.21 (BFT), 0.37 (HCW) and 0.46 (REA) when using Y*. Results obtained with the BC and BL models were similar. Accuracies increased for traits with a higher heritability, and using Y* instead of EBV as response variable resulted in higher accuracy when heritability was higher. CONCLUSIONS: Our results indicate that the accuracy of genomic prediction of carcass traits in Nellore cattle is moderate to high. Prediction of genomic breeding values from adjusted phenotypes Y* was more accurate than from EBV, especially for highly heritable traits. The three models considered (BRR, BC and BL) led to similar predictive abilities and, thus, either one could be used to implement genomic prediction for carcass traits in Nellore cattle.


Subject(s)
Cattle/genetics , Models, Genetic , Quantitative Trait, Heritable , Red Meat , Selective Breeding , Animals , Bayes Theorem , Brazil , Genomics/methods , Genotype , Male , Phenotype , Polymorphism, Single Nucleotide
4.
BMC Genomics ; 14: 305, 2013 May 05.
Article in English | MEDLINE | ID: mdl-23642139

ABSTRACT

BACKGROUND: Knowledge of the linkage disequilibrium (LD) between markers is important to establish the number of markers necessary for association studies and genomic selection. The objective of this study was to evaluate the extent of LD in Nellore cattle using a high density SNP panel and 795 genotyped steers. RESULTS: After data editing, 446,986 SNPs were used for the estimation of LD, comprising 2508.4 Mb of the genome. The mean distance between adjacent markers was 4.90 ± 2.89 kb. The minor allele frequency (MAF) was less than 0.20 in a considerable proportion of SNPs. The overall mean LD between marker pairs measured by r(2) and |D'| was 0.17 and 0.52, respectively. The LD (r(2)) decreased with increasing physical distance between markers from 0.34 (1 kb) to 0.11 (100 kb). In contrast to this clear decrease of LD measured by r(2), the changes in |D'| indicated a less pronounced decline of LD. Chromosomes BTA1, BTA27, BTA28 and BTA29 showed lower levels of LD at any distance between markers. Except for these four chromosomes, the level of LD (r(2)) was higher than 0.20 for markers separated by less than 20 kb. At distances < 3 kb, the level of LD was higher than 0.30. The LD (r(2)) between markers was higher when the MAF threshold was high (0.15), especially when the distance between markers was short. CONCLUSIONS: The level of LD estimated for markers separated by less than 30 kb indicates that the High Density Bovine SNP BeadChip will likely be a suitable tool for prediction of genomic breeding values in Nellore cattle.


Subject(s)
Cattle/genetics , Genomics , Linkage Disequilibrium/genetics , Animals , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...