Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 11(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37046962

ABSTRACT

Diabetes and periodontitis are the most prevalent chronic diseases, and they influence each other's progression. Only a few studies have shown the association between diabetes and mild periodontitis. We aimed to investigate the relationship between well-controlled periodontitis and glycated hemoglobin (HbA1c) in patients with diabetes. This retrospective study investigated 150 Japanese patients with type 2 diabetes treated with supportive periodontal therapy (SPT). Medical histories of diabetes and periodontal therapy were collected, and a multiple linear regression analysis was performed to determine their association. The patients included 67 (44.7%) males and 83 (55.3%) females, with a mean age of 68.1 (standard deviation = 10.5) years. Forty-four (29.3%) patients were treated for diabetes, and the mean HbA1c was 6.7% (0.7). Oral status was 23.3 (5.1) for the number of teeth, 2.5 mm (0.4) for mean probing pocket depth (PPD), and 163.9 mm2 (181.3) for the periodontal inflamed surface area (PISA). The multiple regression analysis showed a significant association between mean PPD (ß = 0.38, p = 0.03) and HbA1c in patients with mild diabetes but not in severe cases. These results suggest that the diagnostic indices for periodontitis used to assess the association between periodontitis and HbA1c would be determined based on the severity of periodontitis and type 2 diabetes.

2.
Stem Cell Res Ther ; 8(1): 219, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974256

ABSTRACT

BACKGROUND: The therapeutic potential of mesenchymal stem cells (MSCs) may be attributed partly to humoral factors such as growth factors, cytokines, and chemokines. Human term placental tissue-derived MSCs (PlaMSCs), or conditioned medium left over from cultures of these cells, have been reported to enhance angiogenesis. Recently, the exosome, which can transport a diverse suite of macromolecules, has gained attention as a novel intercellular communication tool. However, the potential role of the exosome in PlaMSC therapeutic action is not well understood. The purpose of this study was to evaluate PlaMSC-derived exosome angiogenesis promotion in vitro and in vivo. METHODS: MSCs were isolated from human term placental tissue by enzymatic digestion. Conditioned medium was collected after 48-h incubation in serum-free medium (PlaMSC-CM). Angiogenic factors present in PlaMSC-CM were screened by a growth factor array. Exosomes were prepared by ultracentrifugation of PlaMSC-CM, and confirmed by transmission electron microscopy, dynamic light scattering, and western blot analyses. The proangiogenic activity of PlaMSC-derived exosomes (PlaMSC-exo) was assessed using an endothelial tube formation assay, a cell migration assay, and reverse transcription-PCR analysis. The in-vivo angiogenic activity of PlaMSC-exo was evaluated using a murine auricle ischemic injury model. RESULTS: PlaMSC-CM contained both angiogenic and angiostatic factors, which enhanced endothelial tube formation. PlaMSC-exo were incorporated into endothelial cells; these exosomes stimulated both endothelial tube formation and migration, and enhanced angiogenesis-related gene expression. Laser Doppler blood flow analysis showed that PlaMSC-exo infusion also enhanced angiogenesis in an in-vivo murine auricle ischemic injury model. CONCLUSIONS: PlaMSC-exo enhanced angiogenesis in vitro and in vivo, suggesting that exosomes play a role in the proangiogenic activity of PlaMSCs. PlaMSC-exo may be a novel therapeutic approach for treating ischemic diseases.


Subject(s)
Angiogenic Proteins/pharmacology , Ear Auricle/drug effects , Exosomes/transplantation , Neovascularization, Physiologic/drug effects , Placenta/cytology , Reperfusion Injury/therapy , Angiogenic Proteins/isolation & purification , Animals , Biological Assay , Cell Movement , Culture Media, Conditioned/chemistry , Culture Media, Serum-Free , Ear Auricle/blood supply , Ear Auricle/injuries , Ear Auricle/pathology , Exosomes/chemistry , Female , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Male , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , Placenta/metabolism , Pregnancy , Primary Cell Culture , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
3.
J Cell Biochem ; 117(7): 1658-70, 2016 07.
Article in English | MEDLINE | ID: mdl-26640165

ABSTRACT

Mesenchymal stem cell (MSC)-conditioned medium (MSC-CM) has been reported to enhance wound healing. Exosomes contain nucleic acids, proteins, and lipids, and function as an intercellular communication vehicle for mediating some paracrine effects. However, the function of MSC-derived exosomes (MSC-exo) remains elusive. In this study, we isolated human placenta MSC (PlaMSC)-derived exosomes (PlaMSC-exo) and examined their function in vitro. PlaMSCs were isolated from human term placenta using enzymatic digestion. PlaMSC-exo were prepared from the conditioned medium of PlaMSC (PlaMSC-CM) by ultracentrifugation. The expression of stemness-related genes, such as OCT4 and NANOG, in normal adult human dermal fibroblasts (NHDF) after incubation with PlaMSC-exo was measured by real-time reverse transcriptase PCR analysis (real-time PCR). The effect of PlaMSC-exo on OCT4 transcription activity was assessed using Oct4-EGFP reporter mice-derived dermal fibroblasts. The stimulating effects of PlaMSC-exo on osteoblastic and adipocyte-differentiation of NHDF were evaluated by alkaline phosphatase (ALP), and Alizarin red S- and oil red O-staining, respectively. The expression of osteoblast- and adipocyte-related genes was also assessed by real-time PCR. The treatment of NHDF with PlaMSC-exo significantly upregulated OCT4 and NANOG mRNA expression. PlaMSC-exo also enhanced OCT4 transcription. The NHDF treated with PlaMSC-exo exhibited osteoblastic and adipocyte-differentiation in osteogenic and adipogenic induction media. PlaMSC-exo increase the expression of OCT4 and NANOG mRNA in fibroblasts. As a result, PlaMSC-exo influence the differentiation competence of fibroblasts to both osteoblastic and adipocyte-differentiation. It shows a new feature of MSCs and the possibility of clinical application of MSC-exo. J. Cell. Biochem. 117: 1658-1670, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Exosomes/metabolism , Fibroblasts/metabolism , Gene Expression Regulation/physiology , Mesenchymal Stem Cells/metabolism , Nanog Homeobox Protein/biosynthesis , Octamer Transcription Factor-3/blood , Placenta/metabolism , Female , Humans , Mesenchymal Stem Cells/cytology , Placenta/cytology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...