Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 121(15): 7175-86, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15473785

ABSTRACT

Rotational state resolved center-of-mass angular scattering and kinetic energy release distributions have been determined for the HCl (v' = 0, j' = 0-6) products of the reaction of chlorine with n-butane using the photon-initiated reaction technique, coupled with velocity-map ion imaging. The angular and kinetic energy release distributions derived from the ion images are very similar to those obtained previously for the Cl plus ethane reaction. The angular distributions are found to shift from forward scattering to more isotropic scattering with increasing HCl rotational excitation. The kinetic energy release distributions indicate that around 30% of the available energy is channeled into internal excitation of the butyl radical products. The data analysis also suggests that H-atom abstraction takes place from both primary and secondary carbon atom sites, with the primary site producing rotationally cold, forward scattered HCl (v' = 0) products, and the secondary site yielding more isotropically scattered HCl (v' = 0) possessing higher rotational excitation. The mechanisms leading to these two product channels are discussed in the light of the present findings, and in comparison with studies of other Cl plus alkane reactions.

2.
J Chem Phys ; 121(15): 7222-7, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15473789

ABSTRACT

The orientation and alignment of the (2)P(3/2) and (2)P(1/2) Br photofragments from the photodissociation of HBr is measured at 193 nm in terms of a(q) ((k))(p) parameters, using slice imaging. The A (1)Pi state is excited almost exclusively, and the measured a(q) ((k))(p) parameters and the spin-orbit branching ratio show that the dissociation proceeds predominantly via nonadiabatic transitions to the a (3)Pi and 1 (3)Sigma(+) states. Conservation of angular momentum shows that the electrons of the nascent H atom cofragments (recoiling parallel to the photolysis polarization) are highly spin polarized: about 100% for the Br((2)P(1/2)) channel, and 86% for the Br((2)P(3/2)) channel. A similar analysis is demonstrated for the photodissociation of HCl.

3.
Science ; 300(5627): 1936-8, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12817146

ABSTRACT

The production of spin-polarized hydrogen atoms from the photodissociation of hydrogen chloride with circularly polarized 193-nanometer light is inferred from the measurement of the complete angular momentum distributions of ground state Cl(2P3/2)and excited state Cl(2P1/2)cofragments by slice imaging. The experimentally measured and ab initio predicted a q(k) (p)parameters, which describe the single-surface and multiple-surface-interference contributions to the angular momentum distributions, are in excellent agreement. For laser pulses longer than about 0.7 ns, the polarization of the electron and the proton are both 36%.

4.
Phys Rev Lett ; 90(11): 116104, 2003 Mar 21.
Article in English | MEDLINE | ID: mdl-12688947

ABSTRACT

New chemical-state-specific scanned-energy mode photoelectron diffraction experiments and density functional theory calculations, applied to CO, CO/H, and N2 adsorption on Ni(100), show that chemisorption bond length changes associated with large changes in bond strength are small, but those associated with changes in bond order are much larger, and are similar to those found in molecular systems. Specifically, halving the bond strength of atop CO to Ni increases the Ni-C distance by 0.06 A, but halving the bond order (atop to bridge site) at fixed bond strength causes an increase of 0.16 A.

5.
Phys Rev Lett ; 87(8): 086101, 2001 Aug 20.
Article in English | MEDLINE | ID: mdl-11497962

ABSTRACT

New experimental structure determinations for molecular adsorbates on NiO(100) reveal much shorter Ni-C and Ni-N bond lengths for adsorbed CO and NH3 as well as NO (2.07, 1.88, 2.07 A) than previously computed theoretical values, with discrepancies up to 0.79 A, highlighting a major weakness of current theoretical descriptions of oxide-molecule bonding. Comparisons with experimentally determined bond lengths of the same species adsorbed atop Ni on metallic Ni(111) show values on the oxide surface that are consistently larger (0.1-0.3 A) than on the metal, indicating somewhat weaker bonding.

SELECTION OF CITATIONS
SEARCH DETAIL
...