Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Br J Surg ; 111(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38801441

ABSTRACT

BACKGROUND: Systemic inflammatory response markers have been found to have a prognostic role in several cancers, but their value in predicting the response to neoadjuvant chemotherapy in breast cancer is uncertain. A systematic review and meta-analysis of the literature was carried out to investigate this. METHODS: A systematic search of electronic databases was conducted to identify studies that explored the predictive value of circulating systemic inflammatory response markers in patients with breast cancer before commencing neoadjuvant therapy. A meta-analysis was undertaken for each inflammatory marker where three or more studies reported pCR rates in relation to the inflammatory marker. Outcome data are reported as ORs and 95% confidence intervals. RESULTS: A total of 49 studies were included, of which 42 were suitable for meta-analysis. A lower pretreatment neutrophil-to-lymphocyte ratio was associated with an increased pCR rate (pooled OR 1.66 (95% c.i. 1.32 to 2.09); P < 0.001). A lower white cell count (OR 1.96 (95% c.i. 1.29 to 2.97); P = 0.002) and a lower monocyte count (OR 3.20 (95% c.i. 1.71 to 5.97); P < 0.001) were also associated with a pCR. A higher lymphocyte count was associated with an increased pCR rate (OR 0.44 (95% c.i. 0.30 to 0.64); P < 0.001). CONCLUSION: The present study found the pretreatment neutrophil-to-lymphocyte ratio, white cell count, lymphocyte count, and monocyte count of value in the prediction of a pCR in the neoadjuvant treatment of breast cancer. Further research is required to determine their value in specific breast cancer subtypes and to establish optimal cut-off values, before their adoption in clinical practice.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Humans , Breast Neoplasms/blood , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Female , Prognosis , Biomarkers, Tumor/blood , Neutrophils , Leukocyte Count , Lymphocyte Count , Chemotherapy, Adjuvant , Predictive Value of Tests
2.
Trends Cancer ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38453563

ABSTRACT

KMT2C and KMT2D are histone lysine methyltransferases responsible for the monomethylation of histone 3 lysine 4 (H3K4) residues at gene enhancer sites. KMT2C/D are the most frequently mutated histone methyltransferases (HMTs) in breast cancer, occurring at frequencies of 10-20% collectively. Frequent damaging and truncating somatic mutations indicate a tumour-suppressive role of KMT2C/D in breast oncogenesis. Recent studies using cell lines and mouse models to replicate KMT2C/D loss show that these genes contribute to oestrogen receptor (ER)-driven transcription in ER+ breast cancers through the priming of gene enhancer regions. This review provides an overview of the functions of KMT2C/D and outlines the recent clinical and experimental evidence of the roles of KMT2C and KMT2D in breast cancer development.

3.
J Pers Med ; 14(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38540999

ABSTRACT

Up to 15% of lung cancer patients present two or more anatomically separate primary lung lesions, known as multiple primary lung cancers (MPLCs). While surgical resection or stereotactic body radiation therapy (SBRT) is the standard of care for most early-stage lung cancer cases, this may not be an option for patients with widespread tumours, highlighting the need for the improved targeted management of MPLC patients, which remains challenging. Moreover, the spontaneous regression (SR) of small-cell lung cancer (SCLC) is rare, with only four cases accounted for between 1988 and 2018. We report a rare MPLC case harbouring the mixed histology of non-small-cell lung cancer adenocarcinoma (NSCLCa) and SCLC and the SR of SCLC without treatment. The patient was diagnosed in 2015 with MPLCs, identified as NSCLCa and SCLC. In 2016, a restaging PET/CT scan prior to the start of treatment showed SCLC SR. In 2018, a further tumour was detected in the patient's mandible, and a re-biopsy of the SCLC revealed histology consistent with NSCLCa. Whole-genome sequencing (WGS) analysis identified a high expression of programmed death ligand-1 (PDL-1) in the NSCLCa, which was treated with pembrolizumab. WGS revealed distinct genomic profiles and mutational mechanisms in MPLCs, suggesting the need for distinct targeted therapies to improve the management of MPLC patients and highlighting the importance of precision evaluation.

4.
BMC Cancer ; 24(1): 91, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233810

ABSTRACT

BACKGROUND: The current standard of care in the neoadjuvant setting for high-risk HER2-positive (HER2 +) breast cancer is to combine systemic chemotherapy with dual HER2 blockade, trastuzumab and pertuzumab. Targeted therapies have significantly improved outcomes for patients with HER2-positive breast cancer. To improve treatment-associated toxicity, chemotherapy-sparing approaches are currently being investigated. Trastuzumab deruxtecan (T-DXd) is an HER2-directed antibody-drug-conjugate (ADC) with promising results in the metastatic setting for HER2-positive breast cancer. The SHAMROCK study investigates neoadjuvant T-DXd in early stage HER2-positive breast cancer, using pathological complete response (pCR) rate as the primary endpoint. METHODS: This is a phase II open-label, single arm, adaptive multi-centre trial of T-DXd in the neoadjuvant setting in stage 2-3 HER2-positive breast cancer. Eligible patients will receive 5.4 mg/kg of T-DXd intravenously every 3 weeks for up to 6 cycles. A repeat biopsy will performed after 2 cycles for the RNA disruption index (RDI) score assessment. According to their likelihood of pCR, as determined by the RDI score, patients will either undergo 4 or 6 cycles of T-DXd prior to imaging. Patients with imaging complete response (iCR) after either 4 or 6 cycles will proceed to surgery. Patients who do not achieve iCR will either undergo further systemic therapy or proceed to surgery. DISCUSSION: The SHAMROCK study is a chemotherapy-sparing approach to curative intent treatment, investigating neoadjuvant T-DXd. We hypothesise that neoadjuvant T-DXd will have a high pCR rate and be associated low toxicity in early stage HER2-positive breast cancer. TRIAL REGISTRATION: EudraCT Number: 2022-002485-32; ClinicalTrials.gov identifier: NCT05710666; Cancer Trials Ireland study number: CTRIAL-IE 22-01.


Subject(s)
Breast Neoplasms , Camptothecin/analogs & derivatives , Immunoconjugates , Humans , Female , Breast Neoplasms/pathology , Neoadjuvant Therapy/adverse effects , Receptor, ErbB-2/analysis , Treatment Outcome , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Trastuzumab/therapeutic use , Immunoconjugates/therapeutic use , Multicenter Studies as Topic , Clinical Trials, Phase II as Topic
5.
NPJ Breast Cancer ; 9(1): 72, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758711

ABSTRACT

HER2-positive (HER2+) breast cancer accounts for 20-25% of all breast cancers. Predictive biomarkers of neoadjuvant therapy response are needed to better identify patients with early stage disease who may benefit from tailored treatments in the adjuvant setting. As part of the TCHL phase-II clinical trial (ICORG10-05/NCT01485926) whole exome DNA sequencing was carried out on normal-tumour pairs collected from 22 patients. Here we report predictive modelling of neoadjuvant therapy response using clinicopathological and genomic features of pre-treatment tumour biopsies identified age, estrogen receptor (ER) status and level of immune cell infiltration may together be important for predicting response. Clonal evolution analysis of longitudinally collected tumour samples show subclonal diversity and dynamics are evident with potential therapy resistant subclones detected. The sources of greater pre-treatment immunogenicity associated with a pathological complete response is largely unexplored in HER2+ tumours. However, here we point to the possibility of APOBEC associated mutagenesis, specifically in the ER-neg/HER2+ subtype as a potential mediator of this immunogenic phenotype.

6.
Clin Breast Cancer ; 23(8): 847-855.e2, 2023 12.
Article in English | MEDLINE | ID: mdl-37775347

ABSTRACT

Trastuzumab deruxtecan (T-DXd) is a novel antibody-drug-conjugate (ADC), primarily used in the treatment of HER2-positive breast cancer. This study aimed to conduct a systematic review to evaluate the efficacy and safety of T-DXd in treating breast cancer, based on clinical trials. A systematic search of the literature was conducted to identify clinical trials investigating the efficacy and safety of T-DXd in breast cancer. Clinical trials of any phase were included. Outcome measures were any adverse events and survival. Meta-analysis was conducted where possible. Pooled prevalence for each adverse event of any grade and grade 3 or greater were estimated. Progression-free survival (PFS), overall survival (OS) and objective response rates (ORRs) were also reported to evaluate the efficacy of T-DXd in breast cancer. A total of 1593 patients from 6 clinical trials were included. Common adverse events of any grade were nausea, anemia, neutropenia, vomiting, fatigue, constipation and diarrhea, occurring in greater than 30% of cases. In terms of adverse events of grade 3 or more, only anemia and neutropenia occurred at a relatively high rate. Median PFS ranged from 11.1 to 22.1 months. There was evidence of a benefit of T-DXd compared to controls in terms of both PFS (OR: 0.38; 95% CI: 0.32, 0.45) and OS (OR: 0.61; 95% CI: 0.48, 0.78). ORRs ranged from 37% to 79.9%. The present systematic review shows evidence that T-DXd is a safe and effective agent in the treatment of breast cancer based on currently available data. The most common adverse events affected the blood, lymphatic and gastrointestinal systems. Interstitial lung disease (ILD) is a notable and potentially serious adverse event.


Subject(s)
Anemia , Breast Neoplasms , Neutropenia , Humans , Female , Breast Neoplasms/drug therapy , Trastuzumab/adverse effects , Camptothecin , Receptor, ErbB-2
7.
Br J Cancer ; 129(6): 1022-1031, 2023 10.
Article in English | MEDLINE | ID: mdl-37507543

ABSTRACT

BACKGROUND: The phase II neo-adjuvant clinical trial ICORG10-05 (NCT01485926) compared chemotherapy in combination with trastuzumab, lapatinib or both in patients with HER2+ breast cancer. We studied circulating immune cells looking for alterations in phenotype, genotype and cytotoxic capacity (direct and antibody-dependent cell-mediated cytotoxicity (ADCC)) in the context of treatment response. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from pre- (n = 41) and post- (n = 25) neo-adjuvant treatment blood samples. Direct/trastuzumab-ADCC cytotoxicity of patient-derived PBMCs against K562/SKBR3 cell lines was determined ex vivo. Pembrolizumab was interrogated in 21 pre-treatment PBMC ADCC assays. Thirty-nine pre-treatment and 21 post-treatment PBMC samples were immunophenotyped. Fc receptor genotype, tumour infiltrating lymphocyte (TIL) levels and oestrogen receptor (ER) status were quantified. RESULTS: Treatment attenuated the cytotoxicity/ADCC of PBMCs. CD3+/CD4+/CD8+ T cells increased following therapy, while CD56+ NK cells/CD14+ monocytes/CD19+ B cells decreased with significant post-treatment immune cell changes confined to patients with residual disease. Pembrolizumab-augmented ex vivo PBMC ADCC activity was associated with residual disease, but not pathological complete response. Pembrolizumab-responsive PBMCs were associated with lower baseline TIL levels and ER+ tumours. CONCLUSIONS: PBMCs display altered phenotype and function following completion of neo-adjuvant treatment. Anti-PD-1-responsive PBMCs in ex vivo ADCC assays may be a biomarker of treatment response.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Leukocytes, Mononuclear/metabolism , Neoadjuvant Therapy , Neoplasms/drug therapy , Phenotype , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology
8.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445722

ABSTRACT

PTPN11 encodes the SHP2 protein tyrosine phosphatase that activates the mitogen-activated protein kinase (MAPK) pathway upstream of KRAS and MEK. PTPN11/Shp2 somatic mutations occur frequently in Juvenile myelomonocytic leukaemia (JMML); however, the role of mutated PTPN11 in lung cancer tumourigenesis and its utility as a therapeutic target has not been fully addressed. We applied mass-spectrometry-based genotyping to DNA extracted from the tumour and matched the normal tissue of 356 NSCLC patients (98 adenocarcinomas (LUAD) and 258 squamous cell carcinomas (LUSC)). Further, PTPN11 mutation cases were identified in additional cohorts, including TCGA, Broad, and MD Anderson datasets and the COSMIC database. PTPN11 constructs harbouring PTPN11 E76A, A72D and C459S mutations were stably expressed in IL-3 dependent BaF3 cells and NSCLC cell lines (NCI-H1703, NCI-H157, NCI-H1299). The MAPK and PI3K pathway activation was evaluated using Western blotting. PTPN11/Shp2 phosphatase activity was measured in whole-cell protein lysates using an Shp2 assay kit. The Shp2 inhibitor (SHPi) was assessed both in vitro and in vivo in a PTPN11-mutated cell line for improved responses to MAPK and PI3K targeting therapies. Somatic PTPN11 hotspot mutations occurred in 4/98 (4.1%) adenocarcinomas and 7/258 (2.7%) squamous cells of 356 NSCLC patients. Additional 26 PTPN11 hotspot mutations occurred in 23 and 3 adenocarcinomas and squamous cell carcinoma, respectively, across the additional cohorts. Mutant PTPN11 significantly increased the IL-3 independent survival of Ba/F3 cells compared to wildtype PTPN11 (p < 0.0001). Ba/F3, NCI-H1703, and NCI-H157 cells expressing mutant PTPN11 exhibited increased PTPN11/Shp2 phosphatase activity and phospho-ERK1/2 levels compared to cells expressing wildtype PTPN11. The transduction of the PTPN11 inactivating mutation C459S into NSCLC cell lines led to decreased phospho-ERK, as well as decreased phospho-AKT in the PTPN11-mutated NCI-H661 cell line. NCI-H661 cells (PTPN11-mutated, KRAS-wild type) were significantly more sensitive to growth inhibition by the PI3K inhibitor copanlisib (IC50: 13.9 ± 4.7 nM) compared to NCI-H1703 (PTPN11/KRAS-wild type) cells (IC50: >10,000 nM). The SHP2 inhibitor, in combination with the PI3K targeting therapy copanlisib, showed no significant difference in tumour development in vivo; however, this significantly prevented MAPK pathway induction in vitro (p < 0.0001). PTPN11/Shp2 demonstrated the in vitro features of a driver oncogene and could potentially sensitize NSCLC cells to PI3K inhibition and inhibit MAPK pathway activation following PI3K pathway targeting.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System/genetics , Interleukin-3/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Oncogenes , Mitogen-Activated Protein Kinases/metabolism , Mutation , Adenocarcinoma/genetics
9.
Cancer Biol Ther ; 24(1): 2223388, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37326340

ABSTRACT

BACKGROUND: Studies have demonstrated the efficacy of Palbociclib (CDK 4/6 inhibitor), Gedatolisib (PI3K/mTOR dual inhibitor) and PD0325901 (MEK1/2 inhibitor) in colorectal cancer (CRC), however single agent therapeutics are often limited by the development of resistance. METHODS: We compared the anti-proliferative effects of the combination of Gedatolisib and Palbociclib and Gedatolisib and PD0325901 in five CRC cell lines with varying mutational background and tested their combinations on total and phosphoprotein levels of signaling pathway proteins. RESULTS: The combination of Palbociclib and Gedatolisib was superior to the combination of Palbociclib and PD0325901. The combination of Palbociclib and Gedatolisib had synergistic anti-proliferative effects in all cell lines tested [CI range: 0.11-0.69] and resulted in the suppression of S6rp (S240/244), without AKT reactivation. The combination of Palbociclib and Gedatolisib increased BAX and Bcl-2 levels in PIK3CA mutated cell lines. The combination of Palbociclib and Gedatolisib caused MAPK/ERK reactivation, as seen by an increase in expression of total EGFR, regardless of the mutational status of the cells. CONCLUSION: This study shows that the combination of Palbociclib and Gedatolisib has synergistic anti-proliferative effects in both wild-type and mutated CRC cell lines. Separately, the phosphorylation of S6rp may be a promising biomarker of responsiveness to this combination.


Subject(s)
Colorectal Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Mitogen-Activated Protein Kinase Kinases , Cell Proliferation , Cyclin-Dependent Kinase 4
10.
Front Oncol ; 13: 1066007, 2023.
Article in English | MEDLINE | ID: mdl-36793602

ABSTRACT

Purpose: The development of human epidermal growth factor receptor 2 (HER2)-directed therapies has revolutionized the treatment of HER2-positive breast cancer. The aim of this article is to review the continually evolving treatment strategies in the neoadjuvant setting of HER2-positive breast cancer, as well as the current challenges and future perspectives. Methods: Searches were undertaken on PubMed and Clinicaltrials.gov for relevant publications and trials. Findings: The current standard of care in high-risk HER2-positive breast cancer is to combine chemotherapy with dual anti-HER2 therapy, for a synergistic anti-tumor effect. We discuss the pivotal trials which led to the adoption of this approach, as well as the benefit of these neoadjuvant strategies for guiding appropriate adjuvant therapy. De-escalation strategies are currently being investigated to avoid over treatment, and aim to safely reduce chemotherapy, while optimizing HER2-targeted therapies. The development and validation of a reliable biomarker is essential to enable these de-escalation strategies and personalization of treatment. In addition, promising novel therapies are currently being explored to further improve outcomes in HER2-positive breast cancer.

11.
Healthcare (Basel) ; 10(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36141326

ABSTRACT

Liquid biopsy (LB) is a minimally invasive method which aims to detect circulating tumor-derived components in body fluids. It provides an alternative to current cancer screening methods that use tissue biopsies for the confirmation of diagnosis. This paper attempts to determine how far the regulatory, policy, and governance framework provide support to LB implementation into healthcare systems and how the situation can be improved. For that reason, the European Alliance for Personalised Medicine (EAPM) organized series of expert panels including different key stakeholders to identify different steps, challenges, and opportunities that need to be taken to effectively implement LB technology at the country level across Europe. To accomplish a change of patient care with an LB approach, it is required to establish collaboration between multiple stakeholders, including payers, policymakers, the medical and scientific community, and patient organizations, both at the national and international level. Regulators, pharma companies, and payers could have a major impact in their own domain. Linking national efforts to EU efforts and vice versa could help in implementation of LB across Europe, while patients, scientists, physicians, and kit manufacturers can generate a pull by undertaking more research into biomarkers.

12.
Lung Cancer ; 168: 67-73, 2022 06.
Article in English | MEDLINE | ID: mdl-35526313

ABSTRACT

INTRODUCTION: Small diagnostic tissue samples can be inadequate in testing an expanding list of validated oncogenic driver alterations and fail to reflect intratumour heterogeneity (ITGH) in lung cancer. Liquid biopsies are non-invasive and may better reflect ITGH. Most liquid biopsies are performed in the context of circulating tumour DNA (ctDNA) in plasma but Exhaled Breath Condensate (EBC) shows promise as a lung-specific liquid biopsy. METHODS: In this prospective, proof-of-concept study we carried out targeted Next Generation Sequencing (NGS) on diagnostic tissue samples from 125 patients with lung cancer and compared results to plasma and EBC for 5 oncogenic driver mutations (EGFR, KRAS, PIK3CA, ERBB2, BRAF) using an ultrasensitive PCR technique (UltraSEEK™ Lung Panel on the MassARRAY® System, Agena Bioscience, San Diego, CA, USA). RESULTS: There was a significantly higher failure rate due to unamplifiable DNA in tissue NGS (57/125, 45.6%) compared to plasma (27/125, 21.6%, p < 0.001 and EBC (26/125,20.8%, p ≤ 0.001. Consequently, both plasma and EBC identified higher number of mutations compared to tissue NGS. Specifically, there were significantly higher numbers of mutations detected in EGFR, KRAS and PIK3CA in plasma (p = 9.82 × 10-3, p = 3.14 × 10-5, p = 1.95 × 10-3) and EBC (p = 2.18 × 10-3, p = 2.28 × 10-4,p = 0.016) compared to tissue NGS. There was considerable divergence in mutation profiles between plasma and EBC with 34/76 (44%) mutations detected in plasma and 37/74 (41.89%) in EBC unique to their respective liquid biopsy. CONCLUSIONS: The results suggest that EBC is effective in identifying clinically relevant alterations in patients with lung cancer using UltraSEEK™ and has a potential role as an adjunct to plasma testing.


Subject(s)
Circulating Tumor DNA , Lung Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , ErbB Receptors/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Oncogenes , Prospective Studies , Proto-Oncogene Proteins p21(ras)/genetics
13.
Br J Cancer ; 127(3): 488-499, 2022 08.
Article in English | MEDLINE | ID: mdl-35501389

ABSTRACT

BACKGROUND: We tested the hypothesis that inhibitor of apoptosis family (IAP) proteins may be altered in BRCA1-mutated ovarian cancers and that could affect the sensitivity to IAP inhibitors. METHODS: The levels of IAP proteins were evaluated in human cancers and cell lines. Cell lines were used to determine the effects of IAP inhibitors. The in vivo effects of treatments were evaluated in PDX mouse models. RESULTS: Expression of X-linked inhibitor of apoptosis (XIAP) is increased in BRCA1-mutated cancers and high levels are associated with improved patient outcomes after platinum chemotherapy. XIAP overexpression is mediated by NF-kB activation and is associated with an optimisation of PARP. BRCA1-mutated cell lines are particularly sensitive to IAP inhibitors due to an inhibitory effect on PARP. Both a BRCA1-mutated cell line with acquired resistance to PARP inhibitors and one with restored BRCA1 remain sensitive to IAP inhibitors. Treatment with IAP inhibitors restores the efficacy of PARP inhibition in these cell lines. The IAP inhibitor LCL161 alone and in combination with a PARP inhibitor, exhibited antitumour effects in PDX mouse models of resistant BRCA2 and 1-mutated ovarian cancer, respectively. CONCLUSION: A clinical trial may be justified to further investigate the utility of IAP inhibitors.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Apoptosis , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , Female , Humans , Mice , Mutation , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , X-Linked Inhibitor of Apoptosis Protein/genetics
16.
J Pers Med ; 11(8)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34442412

ABSTRACT

Pulmonary enteric adenocarcinoma (PEAC) is a rare variant of lung adenocarcinoma first described in the early 1990s in a lung tumour with overlapping lung and small intestine features. It is a rare tumour with fewer than 300 cases described in the published literature and was only formally classified in 2011. Given these characteristics the diagnosis is challenging, but even more so in a patient with prior gastrointestinal malignancy. A 68-year-old Caucasian female presented with a cough and was found to have a right upper lobe mass. Her history was significant for a pT3N1 colon adenocarcinoma. The resected lung tumour showed invasive lung adenocarcinoma but also features of colorectal origin. Immuno-stains were strongly and diffusely positive for lung and enteric markers. Multi-region, whole-exome sequencing of the mass and archival tissue from the prior colorectal cancer showed distinct genomic signatures with higher mutational burden in the PEAC and very minimal overlap in mutations between the two tumours. This case highlights the challenge of diagnosing rare lung tumours, but more specifically PEAC in a patient with prior gastro-intestinal cancer. Our use of multi-region, next-generation sequencing revealed distinct genomic signatures between the two tumours further supporting our diagnosis, and evidence of PEAC intra-tumour heterogeneity.

17.
J Transl Med ; 19(1): 184, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33933113

ABSTRACT

BACKGROUND: Aberrant PI3K signalling is implicated in trastuzumab resistance in HER2-positive gastric cancer (GC). The role of PI3K or MEK inhibitors in sensitising HER2-positive GCs to trastuzumab or in overcoming trastuzumab resistance is unclear. METHODS: Using mass spectrometry-based genotyping we analysed 105 hotspot, non-synonymous somatic mutations in PIK3CA and ERBB-family (EGFR, ERBB2, ERBB3 and ERBB4) genes in gastric tumour samples from 69 patients. A panel of gastric cell lines (N87, OE19, ESO26, SNU16, KATOIII) were profiled for anti-proliferative response to the PI3K inhibitor copanlisib and the MEK1/2 inhibitor refametinib alone and in combination with anti-HER2 therapies. RESULTS: Patients with HER2-positive GC had significantly poorer overall survival compared to HER2-negative patients (15.9 months vs. 35.7 months). Mutations in PIK3CA were only identified in HER2-negative tumours, while ERBB-family mutations were identified in HER2-positive and HER2-negative tumours. Copanlisib had anti-proliferative effects in 4/5 cell lines, with IC50s ranging from 23.4 (N87) to 93.8 nM (SNU16). All HER2-positive cell lines except SNU16 were sensitive to lapatinib (IC50s 0.04 µM-1.5 µM). OE19 cells were resistant to trastuzumab. The combination of lapatinib and copanlisib was synergistic in ESO-26 and OE-19 cells (ED50: 0.83 ± 0.19 and 0.88 ± 0.13, respectively) and additive in NCI-N87 cells (ED50:1.01 ± 0.55). The combination of copanlisib and trastuzumab significantly improved growth inhibition compared to either therapy alone in NCI-N87, ESO26 and OE19 cells (p < 0.05). CONCLUSIONS: PI3K or MEK inhibition alone or in combination with anti-HER2 therapy may represent an improved treatment strategy for some patients with HER2-positive GC, and warrants further investigation in a clinical trial setting.


Subject(s)
Stomach Neoplasms , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Humans , Lapatinib , Phosphatidylinositol 3-Kinases , Receptor, ErbB-2/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Trastuzumab/pharmacology , Trastuzumab/therapeutic use
18.
Cancers (Basel) ; 13(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799597

ABSTRACT

BACKGROUND: Activation of the phosphoinositide-3 kinase (PI3K) pathway is a resistance mechanism to anti-human epidermal growth factor receptor 2 (HER2) therapy. This phase Ib trial was conducted to determine the maximum tolerated dose (MTD) of copanlisib, an intravenous (IV) pan-class I PI3K inhibitor, combined with trastuzumab. METHODS: Patients with advanced HER2-positive breast cancer and disease progression following at least one prior line of HER2 therapy in the metastatic setting were treated with copanlisib (45 or 60 mg) IV on days 1, 8 and 15 of a 28-day cycle with a fixed dose of trastuzumab 2 mg/kg weekly. RESULTS: Twelve patients were enrolled. The MTD was determined as copanlisib 60 mg plus trastuzumab 2 mg/kg weekly. The most common adverse events of any grade occurring in more than two patients were hyperglycaemia (58%), fatigue (58%), nausea (58%) and hypertension (50%). Stable disease was confirmed at 16 weeks in six participants (50%). PIK3CA mutations were detected in archival tumour of six participants (50%). PIK3CA hotspot mutations, were detectable in pre- and on-treatment plasma of all participants. Pre- and post-treatment tumour biopsies for two patients identified temporal genomic heterogeneity, somatic mutations in the TRRAP gene, which encodes a PI3K-like protein kinase, and emergent somatic mutations related to protein kinase signalling. CONCLUSION: Copanlisib and trastuzumab can be safely administered with fair overall tolerability. Preliminary evidence of tumour stability was observed in patients with heavily pre-treated, metastatic HER2 positive breast cancer. Several potential biomarkers were identified for further study in the current phase 2 clinical trial. NCT: 02705859.

19.
Thorax ; 76(1): 86-88, 2021 01.
Article in English | MEDLINE | ID: mdl-33097604

ABSTRACT

False negatives from nasopharyngeal swabs (NPS) using reverse transcriptase PCR (RT-PCR) in SARS-CoV-2 are high. Exhaled breath condensate (EBC) contains lower respiratory droplets that may improve detection. We performed EBC RT-PCR for SARS-CoV-2 genes (E, S, N, ORF1ab) on NPS-positive (n=16) and NPS-negative/clinically positive COVID-19 patients (n=15) using two commercial assays. EBC detected SARS-CoV-2 in 93.5% (29/31) using the four genes. Pre-SARS-CoV-2 era controls (n=14) were negative. EBC was positive in NPS negative/clinically positive patients in 66.6% (10/15) using the identical E and S (E/S) gene assay used for NPS, 73.3% (11/15) using the N/ORF1ab assay and 14/15 (93.3%) combined.


Subject(s)
Breath Tests/methods , COVID-19 Testing/methods , COVID-19/diagnosis , Exhalation , RNA, Viral/analysis , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Prospective Studies , Reproducibility of Results
20.
Clin Cancer Res ; 27(3): 807-818, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33122343

ABSTRACT

PURPOSE: Antibody-dependent cell-mediated cytotoxicity (ADCC) is one mechanism of action of the monoclonal antibody (mAb) therapies trastuzumab and pertuzumab. Tyrosine kinase inhibitors (TKIs), like lapatinib, may have added therapeutic value in combination with mAbs through enhanced ADCC activity. Using clinical data, we examined the impact of lapatinib on HER2/EGFR expression levels and natural killer (NK) cell gene signatures. We investigated the ability of three TKIs (lapatinib, afatinib, and neratinib) to alter HER2/immune-related protein levels in preclinical models of HER2-positive (HER2+) and HER2-low breast cancer, and the subsequent effects on trastuzumab/pertuzumab-mediated ADCC. EXPERIMENTAL DESIGN: Preclinical studies (proliferation assays, Western blotting, high content analysis, and flow cytometry) employed HER2+ (SKBR3 and HCC1954) and HER2-low (MCF-7, T47D, CAMA-1, and CAL-51) breast cancer cell lines. NCT00524303 provided reverse phase protein array-determined protein levels of HER2/pHER2/EGFR/pEGFR. RNA-based NK cell gene signatures (CIBERSORT/MCP-counter) post-neoadjuvant anti-HER2 therapy were assessed (NCT00769470/NCT01485926). ADCC assays utilized flow cytometry-based protocols. RESULTS: Lapatinib significantly increased membrane HER2 levels, while afatinib and neratinib significantly decreased levels in all preclinical models. Single-agent lapatinib increased HER2 or EGFR levels in 10 of 11 (91%) tumor samples. NK cell signatures increased posttherapy (P = 0.03) and associated with trastuzumab response (P = 0.01). TKI treatment altered mAb-induced NK cell-mediated ADCC in vitro, but it did not consistently correlate with HER2 expression in HER2+ or HER2-low models. The ADCC response to trastuzumab and pertuzumab combined did not exceed either mAb alone. CONCLUSIONS: TKIs differentially alter tumor cell phenotype which can impact NK cell-mediated response to coadministered antibody therapies. mAb-induced ADCC response is relevant when rationalizing combinations for clinical investigation.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/therapy , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Adolescent , Adult , Aged , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lapatinib/pharmacology , Lapatinib/therapeutic use , MCF-7 Cells , Middle Aged , Neoadjuvant Therapy/methods , Protein Kinase Inhibitors/therapeutic use , RNA-Seq , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...