Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Nat Commun ; 14(1): 8204, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081856

ABSTRACT

The conformational landscapes of peptide/human leucocyte antigen (pHLA) protein complexes encompassing tumor neoantigens provide a rationale for target selection towards autologous T cell, vaccine, and antibody-based therapeutic modalities. Here, using complementary biophysical and computational methods, we characterize recurrent RAS55-64 Q61 neoepitopes presented by the common HLA-A*01:01 allotype. We integrate sparse NMR restraints with Rosetta docking to determine the solution structure of NRASQ61K/HLA-A*01:01, which enables modeling of other common RAS55-64 neoepitopes. Hydrogen/deuterium exchange mass spectrometry experiments alongside molecular dynamics simulations reveal differences in solvent accessibility and conformational plasticity across a panel of common Q61 neoepitopes that are relevant for recognition by immunoreceptors. Finally, we predict binding and provide structural models of NRASQ61K antigens spanning the entire HLA allelic landscape, together with in vitro validation for HLA-A*01:191, HLA-B*15:01, and HLA-C*08:02. Our work provides a basis to delineate the solution surface features and immunogenicity of clinically relevant neoepitope/HLA targets for cancer therapy.


Subject(s)
Antigens, Neoplasm , Neoplasms , Humans , Antigens, Neoplasm/genetics , Peptides/metabolism , Histocompatibility Antigens , HLA-A Antigens
3.
Nature ; 623(7988): 820-827, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938771

ABSTRACT

The majority of oncogenic drivers are intracellular proteins, constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient for generating responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins essential for tumorigenesis. We focused on targeting the unmutated peptide QYNPIRTTF discovered on HLA-A*24:02, which is derived from the neuroblastoma-dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (PC-CARs) through a counter panning strategy using predicted potentially cross-reactive peptides. We further proposed that PC-CARs can recognize peptides on additional HLA allotypes when presenting a similar overall molecular surface. Informed by our computational modelling results, we show that PHOX2B PC-CARs also recognize QYNPIRTTF presented by HLA-A*23:01, the most common non-A2 allele in people with African ancestry. Finally, we demonstrate potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that PC-CARs have the potential to expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and allow targeting through additional HLA allotypes in a clinical setting.


Subject(s)
Antigens, Neoplasm , Neuroblastoma , Oncogene Proteins , Peptides , Receptors, Chimeric Antigen , Animals , Humans , Mice , Africa/ethnology , Alleles , Amino Acid Sequence , Carcinogenesis , Cross Reactions , HLA-A Antigens/chemistry , HLA-A Antigens/immunology , Neuroblastoma/genetics , Neuroblastoma/immunology , Neuroblastoma/therapy , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/immunology , Peptides/antagonists & inhibitors , Peptides/chemistry , Peptides/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use
6.
Res Sq ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36865257

ABSTRACT

Hidradenitis suppurativa (HS) is a multifactorial, inflammatory skin disease. Increased systemic inflammatory comorbidities and serum cytokines highlight systemic inflammation as a feature of HS. However, the specific immune cell subsets contributing to systemic and cutaneous inflammation have not been resolved. Here, we generated whole-blood immunomes by mass cytometry. We performed a meta-analysis of RNA-seq data, immunohistochemistry, and imaging mass cytometry to characterize the immunological landscape of skin lesions and perilesions from patients with HS. Blood from patients with HS exhibited lower frequencies of natural killer cells, dendritic cells, and classical (CD14+CD16-) and nonclassical (CD14-CD16+) monocytes, as well as higher frequencies of Th17 cells and intermediate (CD14+CD16+) monocytes than blood from healthy controls. Classical and intermediate monocytes from patients with HS had increased expression of skin-homing chemokine receptors. Furthermore, we identified a CD38+ intermediate monocyte subpopulation that was more abundant in the immunome of blood from patients with HS. Meta-analysis of RNA-seq data found higher CD38 expression in lesional HS skin than in perilesional skin, and markers of classical monocyte infiltration. Imaging mass cytometry showed that CD38+ classical monocytes and CD38+ monocyte-derived macrophages were more abundant in lesional HS skin. Overall, we report targeting CD38 may be worth pursuing in clinical trials.

8.
bioRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36891290

ABSTRACT

Background: Hidradenitis suppurativa (HS) is a multifactorial, inflammatory skin disease. Increased systemic inflammatory comorbidities and serum cytokines highlight systemic inflammation as a feature of HS. However, the specific immune cell subsets contributing to systemic and cutaneous inflammation have not been resolved. Objective: Identify features of peripheral and cutaneous immune dysregulation. Methods: Here, we generated whole-blood immunomes by mass cytometry. We performed a meta-analysis of RNA-seq data, immunohistochemistry, and imaging mass cytometry to characterize the immunological landscape of skin lesions and perilesions from patients with HS. Results: Blood from patients with HS exhibited lower frequencies of natural killer cells, dendritic cells, and classical (CD14+CD16-) and nonclassical (CD14-CD16+) monocytes, as well as higher frequencies of Th17 cells and intermediate (CD14+CD16+) monocytes than blood from healthy controls. Classical and intermediate monocytes from patients with HS had increased expression of skin-homing chemokine receptors. Furthermore, we identified a CD38+ intermediate monocyte subpopulation that was more abundant in the immunome of blood from patients with HS. Meta-analysis of RNA-seq data found higher CD38 expression in lesional HS skin than in perilesional skin, and markers of classical monocyte infiltration. Imaging mass cytometry showed that CD38+ classical monocytes and CD38+ monocyte-derived macrophages were more abundant in lesional HS skin. Conclusion: Overall, we report targeting CD38 may be worth pursuing in clinical trials. Key Messages: 3.Monocyte subsets express markers of activation in circulation and HS lesionsTargeting CD38 may be a viable strategy for treating systemic and cutaneous inflammation in patients with HS. Capsule Summary: 4.Dysregulated immune cells in patients with HS express CD38 and may be targeting by anti-CD38 immunotherapy.

9.
Cancer Lett ; 561: 216149, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36990268

ABSTRACT

Invariant natural killer T (iNKT) cells are innate-like T cells that are abundant in liver sinusoids and play a critical role in tumor immunity. However, the role of iNKT cells in pancreatic cancer liver metastasis (PCLM) has not been fully explored. In this study, we employed a hemi-spleen pancreatic tumor cell injection mouse model of PCLM, a model that closely mimics clinical conditions in humans, to explore the role of iNKT cells in PCLM. Activation of iNKT cells with α-galactosylceramide (αGC) markedly increased immune cell infiltration and suppressed PCLM progression. Via single cell RNA sequencing (scRNA-seq) we profiled over 30,000 immune cells from normal liver and PCLM with or without αGC treatment and were able to characterize the global changes of the immune cells in the tumor microenvironment upon αGC treatment, identifying a total of 12 subpopulations. Upon treatment with αGC, scRNA-Seq and flow cytometry analyses revealed increased cytotoxic activity of iNKT/NK cells and skewing CD4 T cells towards a cytotoxic Th1 profile and CD8 T cells towards a cytotoxic profile, characterized by higher proliferation and reduced exhaustion marker PD1 expression. Moreover, αGC treatment excluded tumor associated macrophages. Lastly, imaging mass cytometry analysis uncovered the reduced epithelial to mesenchymal transition related markers and increased active CD4 and CD8 T cells in PCLM with αGC treatment. Overall, our findings uncover the protective function of activated iNKT cells in pancreatic cancer liver metastasis through increased NK and T cell immunity and decreased tumor associated macrophages.


Subject(s)
Liver Neoplasms , Natural Killer T-Cells , Pancreatic Neoplasms , Animals , Mice , Humans , Epithelial-Mesenchymal Transition , Single-Cell Gene Expression Analysis , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Image Cytometry , Lymphocyte Activation , Tumor Microenvironment
11.
Nature ; 599(7885): 477-484, 2021 11.
Article in English | MEDLINE | ID: mdl-34732890

ABSTRACT

The majority of oncogenic drivers are intracellular proteins, thus constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient to generate responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins that are essential for tumourigenesis and focus on targeting the unmutated peptide QYNPIRTTF, discovered on HLA-A*24:02, which is derived from the neuroblastoma dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (CARs) using a counter-panning strategy with predicted potentially cross-reactive peptides. We further hypothesized that peptide-centric CARs could recognize peptides on additional HLA allotypes when presented in a similar manner. Informed by computational modelling, we showed that PHOX2B peptide-centric CARs also recognize QYNPIRTTF presented by HLA-A*23:01 and the highly divergent HLA-B*14:02. Finally, we demonstrated potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that peptide-centric CARs have the potential to vastly expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and widen the population of patients who would benefit from such therapy by breaking conventional HLA restriction.


Subject(s)
Antigens, Neoplasm/immunology , HLA Antigens/immunology , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Oncogene Proteins/immunology , Receptors, Chimeric Antigen/immunology , Animals , Antigens, Neoplasm/metabolism , Cell Line , Cell Line, Tumor , Cross Reactions , Cross-Priming , Female , HLA Antigens/metabolism , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Humans , Interferon-gamma/immunology , Mice , Neoplasms/metabolism , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/metabolism , T-Lymphocytes/immunology , Transcription Factors/immunology , Transcription Factors/metabolism
12.
Nat Commun ; 11(1): 1909, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312993

ABSTRACT

Peptide exchange technologies are essential for the generation of pMHC-multimer libraries used to probe diverse, polyclonal TCR repertoires in various settings. Here, using the molecular chaperone TAPBPR, we develop a robust method for the capture of stable, empty MHC-I molecules comprising murine H2 and human HLA alleles, which can be readily tetramerized and loaded with peptides of choice in a high-throughput manner. Alternatively, catalytic amounts of TAPBPR can be used to exchange placeholder peptides with high affinity peptides of interest. Using the same system, we describe high throughput assays to validate binding of multiple candidate peptides on empty MHC-I/TAPBPR complexes. Combined with tetramer-barcoding via a multi-modal cellular indexing technology, ECCITE-seq, our approach allows a combined analysis of TCR repertoires and other T cell transcription profiles together with their cognate antigen specificities in a single experiment. The new approach allows TCR/pMHC interactions to be interrogated easily at large scale.


Subject(s)
Carrier Proteins/chemistry , Histocompatibility Antigens Class I/chemistry , Membrane Transport Proteins/chemistry , Molecular Chaperones/chemistry , Peptides/chemistry , Protein Interaction Domains and Motifs , Alleles , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Library , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immunity, Cellular , Immunochemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Models, Molecular , Molecular Chaperones/metabolism , T-Lymphocytes
13.
Proc Natl Acad Sci U S A ; 116(51): 25602-25613, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31796585

ABSTRACT

The interplay between a highly polymorphic set of MHC-I alleles and molecular chaperones shapes the repertoire of peptide antigens displayed on the cell surface for T cell surveillance. Here, we demonstrate that the molecular chaperone TAP-binding protein related (TAPBPR) associates with a broad range of partially folded MHC-I species inside the cell. Bimolecular fluorescence complementation and deep mutational scanning reveal that TAPBPR recognition is polarized toward the α2 domain of the peptide-binding groove, and depends on the formation of a conserved MHC-I disulfide epitope in the α2 domain. Conversely, thermodynamic measurements of TAPBPR binding for a representative set of properly conformed, peptide-loaded molecules suggest a narrower MHC-I specificity range. Using solution NMR, we find that the extent of dynamics at "hotspot" surfaces confers TAPBPR recognition of a sparsely populated MHC-I state attained through a global conformational change. Consistently, restriction of MHC-I groove plasticity through the introduction of a disulfide bond between the α1/α2 helices abrogates TAPBPR binding, both in solution and on a cellular membrane, while intracellular binding is tolerant of many destabilizing MHC-I substitutions. Our data support parallel TAPBPR functions of 1) chaperoning unstable MHC-I molecules with broad allele-specificity at early stages of their folding process, and 2) editing the peptide cargo of properly conformed MHC-I molecules en route to the surface, which demonstrates a narrower specificity. Our results suggest that TAPBPR exploits localized structural adaptations, both near and distant to the peptide-binding groove, to selectively recognize discrete conformational states sampled by MHC-I alleles, toward editing the repertoire of displayed antigens.


Subject(s)
Histocompatibility Antigens Class I , Molecular Chaperones , Peptides , Disulfides/chemistry , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Humans , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Protein Domains
14.
Nat Chem Biol ; 14(8): 811-820, 2018 08.
Article in English | MEDLINE | ID: mdl-29988068

ABSTRACT

Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex.


Subject(s)
Allosteric Regulation , Histocompatibility Antigens Class I/metabolism , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Peptides/metabolism , Histocompatibility Antigens Class I/chemistry , Humans , Immunoglobulins/chemistry , Membrane Proteins/chemistry , Peptides/chemistry , Protein Conformation
15.
Front Immunol ; 9: 99, 2018.
Article in English | MEDLINE | ID: mdl-29441070

ABSTRACT

The identification of recurrent human leukocyte antigen (HLA) neoepitopes driving T cell responses against tumors poses a significant bottleneck in the development of approaches for precision cancer therapeutics. Here, we employ a bioinformatics method, Prediction of T Cell Epitopes for Cancer Therapy, to analyze sequencing data from neuroblastoma patients and identify a recurrent anaplastic lymphoma kinase mutation (ALK R1275Q) that leads to two high affinity neoepitopes when expressed in complex with common HLA alleles. Analysis of the X-ray structures of the two peptides bound to HLA-B*15:01 reveals drastically different conformations with measurable changes in the stability of the protein complexes, while the self-epitope is excluded from binding due to steric hindrance in the MHC groove. To evaluate the range of HLA alleles that could display the ALK neoepitopes, we used structure-based Rosetta comparative modeling calculations, which accurately predict several additional high affinity interactions and compare our results with commonly used prediction tools. Subsequent determination of the X-ray structure of an HLA-A*01:01 bound neoepitope validates atomic features seen in our Rosetta models with respect to key residues relevant for MHC stability and T cell receptor recognition. Finally, MHC tetramer staining of peripheral blood mononuclear cells from HLA-matched donors shows that the two neoepitopes are recognized by CD8+ T cells. This work provides a rational approach toward high-throughput identification and further optimization of putative neoantigen/HLA targets with desired recognition features for cancer immunotherapy.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Epitopes/genetics , Epitopes/immunology , Mutation , Alleles , Amino Acid Sequence , Anaplastic Lymphoma Kinase/metabolism , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Computational Biology/methods , Epitopes/chemistry , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Models, Molecular , Peptides/genetics , Peptides/immunology , Peptides/metabolism , Protein Conformation , Protein Multimerization , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...