Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793286

ABSTRACT

This study delineates a methodology for the preparation of new composites based on a photocurable urethane-acrylate resin, which has been modified with (3-thiopropyl)polysilsesquioxane (SSQ-SH). The organosilicon compound combines fully enclosed cage structures and incompletely condensed silanols (a mixture of random structures) obtained through the hydrolytic condensation of (3-mercaptopropyl)trimethoxysilane. This process involves a thiol-ene "click" reaction between SSQ-SH and a commercially available resin (Ebecryl 1271®) in the presence of the photoinitiator DMPA, resulting in composites with significantly changed thermal properties. Various tests were conducted, including thermogravimetric analysis (TGA), Fourier transmittance infrared spectroscopy (FT-IR), differential scanning calorimetry (Photo-DSC), and photoreological measurement mechanical property, and water contact angle (WCA) tests. The modification of resin with SSQ-SH increased the temperature of 1% and 5% mass loss compared to the reference (for 50 wt% SSQ-SH, T5% was 310.8 °C, an increase of 20.4 °C). A composition containing 50 wt% of SSQ-SH crosslinked faster than the reference resin, a phenomenon confirmed by photorheological tests. This research highlights the potential of new composite materials in coating applications across diverse industries. The modification of resin with SSQ-SH not only enhances thermal properties but also introduces a host of functional improvements, thereby elevating the performance of the resulting coatings.

2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445729

ABSTRACT

Photopolymerization is a growing field with an extensive range of applications and is environmentally friendly owing to its energy-efficient nature. Such light-assisted curing methods were initially used to cure the coatings. However, it has become common to use photopolymerization to produce 3D objects, such as bridges or dental crowns, as well as to cure dental fillings. In this study, polymer nanocomposites containing inorganic nanofillers (such as zinc nano-oxide and zinc nano-oxide doped with two wt.% aluminum, titanium nano-oxide, kaolin nanoclay, zirconium nano-oxide, aluminum nano-oxide, and silicon nano-oxide) were fabricated and studied using Real Time FT-IR to investigate the effects of these nanoadditives on the final conversion rates of the obtained nanocomposites. The effects of the fillers on the viscosity of the produced nanocomposites were also investigated, and 3D prints of the selected nanocomposites were presented.


Subject(s)
Aluminum , Silicon Dioxide , Spectroscopy, Fourier Transform Infrared , Printing, Three-Dimensional , Dentistry , Zinc
3.
Dent Mater ; 39(8): 729, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37393151

ABSTRACT

OBJECTIVES: To obtain new generation dental composites with improved performance properties compared to currently available dental fillings on the market and to determine the influence of new initiating systems on final product parameters such as degree of cure, hardness, color, and shrinkage. METHODS: In order to verify the effectiveness of the developed initiating systems, typical spectroscopic, electrochemical, and kinetic studies using the real-time FT-IR method were shown. Moreover, paste dental fillings were prepared, the compositions were irradiated with the dental lamp, and the degrees of cross-linking were measured by Raman spectroscopy. The polymerization shrinkage was also determined using the rheometer. In addition, their hardness was examined on the Shore scale. Finally, the color analysis of the composites in the L*a*b* color space was compared with the VITA CLASSIC colorant. RESULTS: It was shown that, due to their excellent spectroscopic and electrochemical properties, new quinazolin-2-one can act as co-initiators in cationic and radical photopolymerization. It was demonstrated that the most effective composite containing the initiator system in the form of 3-SCH3Ph-Q, IOD, MDEA, and an inorganic filler as nanometric silica and a bonding agent is cured more than 90% after just 1 cycle of dental lamp exposure (30 s), the hardness of the composite after curing on the Shor Scale is 82 ± 4, and the polymerization shrinkage is less than 2.8%. SIGNIFICANCE: The article demonstrates effective new initiator systems as an alternative to CQ/amine for obtaining new-generation dental composites. The developed dental composites are a big competition to the currently used dental fillings on the market.

4.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142382

ABSTRACT

Three-dimensional printing in SLA (stereolithography) and DLP (digital light processing) technologies has recently been experiencing a period of extremely rapid development. This is due to the fact that researchers recognise the many advantages of 3D printing, such as the high resolution and speed of the modelling and printing processes. However, there is still a search for new resin formulations dedicated to specific 3D printers allowing for high-resolution prints. Therefore, in the following paper, the effects of dyes such as BODIPY, europium complex, and Coumarin 1 added to light-cured compositions polymerised according to the radical mechanism on the photopolymerisation process speed, polymerisation shrinkage, and the final properties of the printouts were investigated. The kinetics of the photopolymerisation of light-cured materials using real-time FT-IR methods, as well as printouts that tangibly demonstrate the potential application of 3D printing technology in Industry 4.0, were examined. These studies showed that the addition of dyes has an effect on obtaining fluorescent prints with good resolution.


Subject(s)
Europium , Stereolithography , Coloring Agents , Coumarins , Printing, Three-Dimensional , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...