Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Appl Radiat Isot ; 208: 111301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522263

ABSTRACT

This study examines the thermoluminescent (TL) properties of undoped Ca4YO(BO3)3 phosphor, focusing on how it behaves under a variety of experimental conditions. The IRSL-TL 565 nm was chosen as the appropriate detection filter among various optical detection filter combinations. During the preheating trials conducted at a rate of 2 °C/s, the TL peak exhibited increased intensity, particularly around 200 °C. The experimental outcomes demonstrated a reliable linear relationship (R2 = 0.996 and b = 1.015) in the dose response of undoped preheated Ca4YO(BO3)3 within the range of 1-200 Gy. The investigation encompasses a range of techniques, including the TM-Tstop method, computerized glow curve deconvolution (CGCD) analysis, and theoretical modelling. The application of the TM-Tstop method to samples irradiated with a 5 Gy dose revealed distinct zones on the TM versus Tstop diagram, signifying the presence of at least two discernible components within the TL glow curve, specifically, a single general order kinetics peak and a continuous distribution. The analysis of activation energy versus preheated temperature exhibited a stepwise curve, indicating five trap levels with depths ranging between 1.13 eV and 1.40 eV. The CGCD method also revealed the superposition of at least five distinct TL glow peaks. It was observed that their activation energies were consistent with the Tm-Tstop experiment. Furthermore, the low Figure of Merit (FOM) value of 1.18% indicates high reliability in the goodness-of-fit measure. These findings affirm the reliability and effectiveness of the employed methods in characterizing the TL properties of the Ca4YO(BO3)3 phosphor under investigation. Theoretical models, including the semi-localized transition model, were introduced to explain anomalous observations in TL glow peak intensities and heating rate patterns. While providing a conceptual framework, these models may require adjustments to accurately capture the specific characteristics uncovered through CGCD analysis. As a potential application, the study suggests that the characterized TL properties of Ca4YO(BO3)3 phosphor could be utilized in dosimetric applications, such as radiation dose measurements, owing to its reliable linear response within a broad dose range.

2.
Appl Radiat Isot ; 205: 111169, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38157794

ABSTRACT

SrGd2O4 phosphors doped with Eu3+ were successfully synthesized through a sol-gel combustion method, covering a range of dopant concentrations from 0.25 mol% to 3 mol%. The structural analysis of these phosphor materials was comprehensively conducted utilizing various techniques, including X-ray powder diffraction analysis (XRD), Energy Dispersive X-ray (EDX), and Fourier-transform infrared spectroscopy (FTIR). In addition to unveiling the structural characteristics, these analyses provide valuable insights into the compositional aspects, enhancing our understanding of the synthesized SrGd2O4:Eu3+ phosphors across different doping levels. XRD analysis findings validate the successful generation of the intended SrGd2O4 host, demonstrating orthorhombic system structures consistent with JPCD card number 98-019-3592. FTIR analyses conducted on the phosphor samples not only identify bending modes but also reveal intricate details about small vibration bonds within the material. When excited by the 349 nm laser, SrGd2O4:xEu3+ phosphors exhibit distinct photoluminescence (PL) properties like red emission at 614 nm from Eu3+. From the emission spectra, one can clearly observe that Eu3+ with an ionic radius close to the Gd3+ ion preferentially occupies the symmetry sites of the host lattice. The optimal doping concentration was determined to be 0.5 mol%, as revealed by the data in our study. Additionally, a deeper understanding of the luminescence quenching mechanism was attained, pinpointing the involvement of dipole-dipole (d-d) energy transfer in this intriguing phenomenon. This optimal concentration not only enhances the material's properties but also underscores the pivotal role of d-d interactions in governing the luminescence behavior within the doped system.

3.
Appl Radiat Isot ; 198: 110851, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37182394

ABSTRACT

The current study focuses on the production of GdAl3(BO3)4 (GAB) phosphors using gel combustion. X-ray diffraction (XRD) and thermoluminescent (TL) methods were used to investigate the structural and thermoluminescence (TL) features of the samples. XRD results revealed that GAB phosphors were crystallized in a rhombohedral crystal system. TL experimental data exhibited an unusual heating rate behaviour, which was explained by the semi-localized transition model, and this provides valuable insight into the properties of the GAB sample. Beta-irradiated GAB hosts exhibit two primary peaks at 106 °C and 277 °C on their TL glow curves. We have employed a variety of heating rates (VHRs), TM-Tstop method, and computerized glow curve deconvolution (CGCD) techniques. By using a combination of these techniques, we can identify the kinetic parameters of the GAB samples more accurately, including peak numbers, activation energy, and frequency factors. Both Tm-Tstop and CGCD techniques produce similar results in terms of trap numbers and trap depths. In the trap centers, electrons were trapped at 1.05 eV, 0.84 eV, 1.12 eV, 1.20 eV, 1.42 eV, 1.63 eV and 1.42 eV. There was a linear behaviour of GAB samples over a dose range of 0.1 Gy-10 Gy. GAB phosphors did not show any significant changes in TL response with repeated irradiation cycles, suggesting that it is a reliable radiation dosimeter. GAB is therefore a potential candidate for radiotherapy dose measurement based on these findings.


Subject(s)
Electrons , Heating , X-Ray Diffraction , Kinetics
4.
Appl Radiat Isot ; 194: 110686, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36682160

ABSTRACT

With the aid of thermoluminescence (TL), we have extensively studied YAl3(BO3)4 host matrices incorporated with Tb3+ at different doping contents, which have been produced by combustion. The measured the TL glow curves exposed to beta rays at different doses consisted of four broad peaks located at around 76, 126, 230, and 378 °C. The peak maximum of the 230 °C TL peak shifts toward higher temperatures after 5 Gy beta irradiation while the other peak maxima almost remain constant. It is peculiar that 230 °C peak maximum shifts to higher temperatures with increased radiation dose and can be attributed to the multiple phases of the sample. A TL glow curve exhibits a proportional increase in intensity with increased the heating rate. A discussion of the possible causes of this pattern is provided. Observed peaks using the Tm─Tstop method are due to the presence of a quasi-continuous distribution of traps. The parameters of the traps have also been estimated using various heating rate methods in excellent agreement with one another.

5.
Appl Radiat Isot ; 191: 110549, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343580

ABSTRACT

In this work, SrGd2O4 phosphors incorporated with Eu3+ at various dopant concentrations are synthesized via solid state reaction method. An X-ray diffraction (XRD) and thermoluminescence (TL) technique were used to examine the structural and thermoluminescent properties of as-prepared phosphors. Orthorhombic phase formation of Eu3+ doped samples was confirmed by XRD. The influence of impurity concentration and heating rates on the glow curves was also investigated. Anomalous heating rate pattern was observed in the sample with Eu3+ additive. A model of semi-localized transition was used to explain this behaviour. The TL glow curves of beta irradiated SrGd2O4:Eu3+ (0.25 mass %) reveal three well-resolved peaks at 105, 189, and 245 °C. Various heating rates, TM-Tstop, initial rise, and computerized glow curve deconvolution techniques were employed to detect the overlapping peak numbers and establish the kinetic parameters of SrGd2O4:Eu3+ (0.25 mass %). When the trap numbers and comparable energy values are considered, the findings of the approaches are very similar. For the dose ranges between 0.1 and 8 Gy, SrGd2O4:Eu3+ (0.25 mass %) samples exhibited linear behaviour, and high reproducibility, indicating their applicability for TL dosimetry applications.


Subject(s)
Europium , Strontium , Europium/chemistry , Reproducibility of Results , Gamma Rays , Thermoluminescent Dosimetry/methods
6.
Appl Radiat Isot ; 186: 110300, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35635859

ABSTRACT

Thermoluminescence (TL) emission of tridymite, a quartz-like mineral, could be used for a variety purposes, including basic research, ceramic technology, traditional/medical industry, and dating. The current study focused on the investigation of the thermal effects on both the luminescence emission and structural properties of natural tridymite. Thermally stimulated luminescence of beta and UVC irradiated samples exhibits complex glow curves indicating simultaneous physical-chemistry processes such as phase transitions, dehydration, dehydroxylation or redox reactions involving intrinsic defects (O vacancies giving rise to F+ and F-type centers, Schottky and Frenkel defects), extrinsic defects (dopants) and structural defects (stacking fault defects, linear and planar defects or dislocations). TL glow curves can be analyzed despite the complexity by assuming that photon emission can be fitted to 1st order kinetics. The structural changes observed using thermal X-ray diffraction up to 200 °C indicate that the Miller indices (204) and (321) have only a reversible behavior in the range of 26-29° 2θ. Tests based on the TL also corroborate such reversibility.

7.
Appl Radiat Isot ; 186: 110299, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35613536

ABSTRACT

Ca3Y2B4O12 (CBYO) phosphor was synthesized using a gel combustion method. X-ray diffraction (XRD) measurement confirmed a single-phase structure (space group Pnma (62)) of synthesized compound. TL measurements were conducted between room temperature (RT) and 450 °C at a heating rate of 2 °Cs-1. Significant glow peaks were observed at 64, 116, and 242 °C in CYBO phosphor sample exposed to different beta doses. In the range of 0.1-100 Gy, the TL intensity of the glow peak displayed good linearity. Different methods were employed to determine the number of peaks, the trap structure, and the kinetic parameters of the thermoluminescence glow curve of CBYO; the Hoogenstraaten method, various heating rates (VHR), and glow curve deconvolution method (CGCD) implemented through tgcd:An R package. Currently available findings confirm that CYBO host is a promising candidate for environmental studies because one exhibits adequate TL dose response coupled with a good sensitivity and linearity.

8.
Appl Radiat Isot ; 185: 110257, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35490590

ABSTRACT

This study reports cathodoluminescence (CL) and photoluminescence (PL) properties of undoped borate Ca3Y2B4O12 and Ca3Y2B4O12:x Dy3+ (x = 0.5, 1, 2, 3, 5, and 7) synthesized by gel combustion method. Micro-X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), CL and PL under electron beam and 359 nm pulse laser excitation, respectively were used to investigate characterization and luminescence studies of synthesized samples in the visible wavelength. As-prepared samples match the standard Ca3Y2BO4 phase that belongs to the orthorhombic system with space group Pnma (62) based on XRD results. Under electron beam excitation, this borate host shows a broad band emission from about 250 to 450 nm, peaked at 370 nm which is attributed to NBHOC. All as-prepared phosphors exhibited the characteristic PL and CL emissions of Dy3+ ions corresponding to 4F9/2→6HJ transitions when excited with laser at 359 nm. The CL emission spectra of phosphors were identical to those of the PL spectra. Concentration quenching occurred when the doping concentration was 1 mol% in both the CL and PL spectra. The underlying reason for the concentration quenching phenomena observed in the discrete orange-yellow emission peaked at 574 nm of Dy3+ ion-doped Ca3Y2B4O12 phosphor is also discussed. According to these data, we can infer that this new borate can be used as a yellow emitting phosphor in solid-state illumination.

9.
Appl Radiat Isot ; 181: 110075, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34953319

ABSTRACT

BaSiF6 phosphor was synthesized by a gel combustion method. The crystalline size was found to be 54.17 ± 4.36 nm using Williamson-Hall (W-H) approximation. The TL data collected by means of a combination of a commercial BG39 and HC575/25 filters was studied to evaluate basic kinetic parameters. Three TL glow peaks of BaSiF6 phosphors are centered at around 84, 190 and 322 °C. Tm-Tstop, various heating rate (VHR) and computerized glow-curve deconvolution (CGCD) method were utilized to analyse collected data. Our findings indicate that luminescence process in scrutinized material may obey second order kinetics. The TL dose response of the TL glow peaks exhibits a linear characteristic up to 100 Gy. Deconvolution of the glow curve reveals that the number of the component TL glow peaks in the complex glow curve is composed of well-isolated six overlapping glow peaks. The FOM value is 2.32.

10.
Appl Radiat Isot ; 173: 109738, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33910130

ABSTRACT

In this study, we have synthesized B doped Ca5(PO4)3OH (HAP) by a sonication chemical method. The thermoluminescence (TL) properties of the family of synthesized samples (B doped Ca5(PO4)3OH (HAP) were investigated using an IRSL-TL 565 nm filter. This gave the highest TL intensity of each phosphor after 2 Gy ß-irradiation. Three TL glow peaks of B doped Ca5(PO4)3OH (HAP) are centered at around 84, 208 and 324 °C (with a heating rate of 2 °Cs-1). The trapping parameters such as activation energy (E), order of kinetics (b), frequency factor (s) were calculated by using initial rise (IR), various heating rates (VHR) and computerized glow curve deconvolution (CGCD) method. The response of TL glow curves remained constant within ±5% deviation from the initial value after 9 cycles of reuse; but only at tenth cycle the deviation goes up to 6%.

11.
Appl Radiat Isot ; 154: 108876, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31470191

ABSTRACT

In this study, we performed X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) techniques to examine the structure and morphological observation of the samples and thermoluminescence (TL) experiments to extract the trapping parameters and dosimetric properties of LaAlBO3 phosphors doped with Eu at various doping concentrations. Diffraction patterns of obtained sample were well consistent JCPDS card No 98-009-7945, indicating the formation of pure phase. The TL kinetic parameters were estimated by CGCD software. TL glow curves of LaAlBO3:Eu3+ consist of 12 trap levels and exhibited dominantly first order kinetics. Photoluminescence (PL) emission was observed in the range 400-800 nm for LaAlBO3 phosphor doped with Eu3+. The dominant emission of Eu3+ corresponding to the electric dipole transition 5D0 → 7F2 is located at 616 nm. The sharp emission properties exhibited demonstrate that the LaAlBO3 is a suitable host for rare-earth ion doped phosphor material. It is observed that for the variable concentration of Eu3+ on PL studies, the PL intensity augments with increase in the dopant concentration and the concentration quenching was found after 1 mass% of Eu3+. The PL experimental results reveal that LaAlBO3:Eu3+ phosphor as an red emitting phosphor may be promising luminescence materials for the optoelectronic applications.

12.
Appl Radiat Isot ; 147: 91-98, 2019 May.
Article in English | MEDLINE | ID: mdl-30825838

ABSTRACT

Thermoluminescence properties of undoped and Dy doped MgB4O7 compounds were studied with the irradiation of 252Cf source. The TL kinetic parameters of MgB4O7: Dy were studied by computer glow curve deconvolution (CGCD) method. The glow curve structures of 1% Dy doped magnesium tetraborate compound consists of at least five glow peaks with a main dosimetric peak at about 220 °C. The highest sensitivity which is approximately 1.90 and 1.47 times higher than that of TLD-600 and TLD-700 was found for MgB4O7: Dy (1 mol%). The results clearly showed that Dysprosium doped magnesium borate has a potential to be considered as the thermoluminescence neutron + gamma dosimeter.

13.
Appl Radiat Isot ; 147: 177-181, 2019 May.
Article in English | MEDLINE | ID: mdl-30878780

ABSTRACT

In this paper we describe the thermoluminescence (TL) characteristics of 0.8 mol% Tm3+ doped ZnB2O4phosphors prepared by a wet-chemical method. The TL glow curves of the phosphor sample consisted of three peaks located at 181 °C, 213 °C and 351 °C. The glow peak TL temperature (Tm) at which the TL glow peak occurs shifts toward the higher temperature side whilst the heating ramp rate increases and also the peak TL intensity (Im) decreases. The TL glow curves are characterized by evaluating various dosimetric characteristics of scrutinized samples. The Tm-Tstopinvestigations on regenerated TL signals revealed that there are five different traps in the phosphor with energy values in the range of 0.61-1.71 eV. The dose responses increased in a linear way for 3 peaks with the beta-ray exposure in the dose range of 0.11-60 Gy. The process of applying 10 Gy dose was repeated for ten successive irradiation cycles to check reproducibility and the maximum variation was found to be less than 1% from the average value. These results provide valuable knowledge for use of the characteristics of Tm doped ZnB2O4 in dosimetry research.

14.
Appl Radiat Isot ; 142: 46-50, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30248589

ABSTRACT

In this work, Eu, Nd co-doped MAl2O4:Eu, Nd (M = Ca, Sr, Ba) phosphors were synthesized at low temperatures (550 °C) by the combustion method. The crystallinity of the phosphors was monitored by X-ray diffraction (XRD) and the morphology was examined by scanning electron microscope (SEM). Synthesis of phosphors, the effect of lanthanide concentrations on light emission intensity and duration investigated by using photoluminescence (PL) measurements. Narrow orange-red emissions from 500 to 750 nm in the PL spectra are assigned to 5D0 → 7Fj (j = 0,1,2,3,…) transitions of Eu3+ ion. In contrast, the broad luminescence band of the samples in the range of 400-500 nm are attributed to the 5d-4 f transitions of Eu3+ ion in the same host materials. Investigated the effects of radiation on the severity of the trap depths of these structures. The decay curves of these phosphors show how long the phosphors are attenuated. Thermoluminescence (TL) glow curves have been recorded from room temperature to 300 °C at a constant heating rate of 1 °C/s after preheat process at 130 °C for 10 s using lexsyg smart TL/OSL reader. Nd3+ trap levels can be thought of as the lanthanide element that causes long composition in the phosphorescence structure at room temperature.

15.
Appl Radiat Isot ; 141: 101-106, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30196246

ABSTRACT

This work reports on the cathodoluminescence (CL) and thermoluminescence (TL) properties of gem-quality diaspore samples from Milas/Mugla (Turkey) after 100 h of ultraviolet-C (UVC) exposure. The UVC exposure induces significant changes in the intensity of the CL emission in the range of 400-800 nm that would be mainly associated with photo-oxidation processes of the impurities (Cr3+, Ti3+, Fe2+) that substitute for Al3+ in the diaspore (α-AlOOH) lattice. The UVC effect on the 400 nm-TL behavior of beta irradiated samples in the range of 0.1-8 Gy modifies the TL glow curves probably due to both photo-transfer process where electrons release from deeper to shallower traps and redox reactions involving, also, breakages-linkages of chemical bonds. Meanwhile, the 'as received' samples consist of three maxima centered at about 120, 180, and 234 °C, the 100 h UVC-irradiated samples display three maxima at 122, 220 and 270 °C. The physical trapping parameters (intensity and peak position, trap depth and pre-exponential factor) for each TL curve were estimated by using a computerized glow curve analysis program.

16.
Appl Radiat Isot ; 127: 35-40, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28501718

ABSTRACT

Several ZnB2O4 powder samples having dopants concentrations of 0.1, 0.01, 0.04wt% Ce and La were prepared using the nitric acid method via the starting oxides. Several complementary methods such as powder X-ray diffraction (XRD), thermal analyses environmental scanning electron microscopy (ESEM), Radioluminescence (RL) and Cathodoluminescence (CL) techniques were used. Unique luminescence properties of Ce doped ZnB2O4 powder samples are reported for the first time. A new luminescence bands appearing in red part of the spectrum and having all the characteristics of Ce3+ were obtained from RL results. Changing the Ce and La concentration of 0.01-0.1wt% leads to an increase in RL and CL intensities of Ce3+ and La3+ ions and also CL emission spectra of ZnB2O4 show gradual shift towards longer wavelength. When we compare the luminescence intensity of the samples it is seen that Ce doped ZnB2O4 has the highest intense whereas La doped ZnB2O4 has the lowest one. However, emission spectra of both Ce and La doped samples kept unchanged.

17.
Appl Radiat Isot ; 95: 222-225, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25464202

ABSTRACT

Boron-rich compounds are of interest in the nuclear industry because they exhibit a high neutron absorption cross section. The manufacture of these materials involves the application of thermal and chemical treatments. This paper focuses on the study of the effect of the heating rate (HR) in two thermal techniques, differential thermal analysis (DTA) and thermoluminescence (TL), performed on natural ulexite from Bigadiç-Balikesir (Turkey). The TL measurements were performed at six different heating rates in the range of 25-240°Cmin-1. The UV-blue TL emission of natural ulexite shifted toward higher temperatures with increasing heating rate, whereas the intensity decreased. The kinetic parameters of the ulexite (Ea=0.65(9) eV and s=1.22×1012s-1) were calculated using the variable heating rate method. DTA measurements performed in the range of 0.5-10°Cmin-1 displayed similar behavior to that of the TL response, despite the differences in technique and HR values. The DTA results indicated that natural ulexite exhibits two endothermic peaks originating from different processes: (i) a phase transition between the pentahydrated ulexite phase and a triple-hydrated phase and (ii) dehydration, dehydroxylation and alkali and earth-alkali self-diffusion processes in the ulexite lattice. The main endothermic peak shifted from 160°C to 250°C as the heating rate was increased.

18.
Appl Radiat Isot ; 70(6): 946-51, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22476018

ABSTRACT

This paper reports on the Thermoluminescence (TL) and Cathodoluminescence (CL) emission of well-characterized hydrothermal milky quartz specimens from Hakkari in Turkey, labeled THQ, and Madrid in Spain, labeled SHQ, and metamorphic quartz from Madrid, in Spain, labeled SMQ. Both hydrothermal and metamorphic quartz samples display similar UV-IR CL spectra consisting of five groups of components centered at 330 nm and 380 nm linked to [AlO(4)]° centers, 420 nm due to intrinsic defects such as oxygen vacancies, lattice defects, and impurities which modify the crystal structure, 480 nm associated with [AlO(4)]° centers of substitutional Al(3+), and a red broad band related to the hydroxyl defects in the quartz lattice as precursors of non-bridging oxygen hole centers (NBOHC) and substitutional point defects. The Turkish quartz specimen exhibits higher CL intensity in the UV region (up to 330 nm) than the Spanish specimens probably linked to the presence of Ca (0.95% in THQ and less than 0.1% in SHQ and SMQ). At wavelengths greater than 330 nm, SMQ (formed at high pressure 6000 bars and temperatures over 500-600°C) shows higher intensity than the hydrothermal (growth at 2000 bars and temperatures 200-300°C) samples associated with the formation process. The natural blue TL glow curves of both THQ and SHQ display a weaker TL intensity than the SMQ, attributable to the Al (0.32%), Ti (0.14%), K (0.01%) and Zr (76 ppm) content. It is shown that mineralogical formation, crystallinity index and the content of the impurities seem to be the main parameters of influence in the shape intensity of the CL and TL glow curve emission.


Subject(s)
Luminescence , Luminescent Measurements/methods , Quartz/chemistry , Quartz/radiation effects , Thermoluminescent Dosimetry/methods , Hot Temperature , Materials Testing , Mining , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...