Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 313: 116541, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37088237

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Recent studies claim that Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) overlap in several common pathological pathways which from neuronal damage to impaired memory performance. It is known that the use of Rosa canina L. (R. canina) as medicine in folk medicine dates back to ancient times and is used in the treatment of nervous diseases in Persian medicine. However, the effect of R. canina on diabetes-related cognitive decline and memory impairment has not yet been studied. AIM OF THE STUDY: We evaluated the impact of T2DM on AD-like alterations and examined the molecular mechanism of a possible effect of R. canina on cognitive alterations in diabetic rats. MATERIALS&METHODS: R. canina ethanol extract was obtained by maceration method. This study was performed with male Sprague-Dawley rats fed with a high-fat diet (HFD) for 8 weeks, low-dose streptozotocin (STZ; 35 mg/kg IP) injection for 4 weeks, and R. canina (250 mg/kg; per oral) and metformin (400 mg/kg; per oral) administration for 4 weeks. The weight and blood glucose of rats were measured weekly. To evaluate glucose tolerance area under the curve (AUC) was calculated by performing an oral glucose tolerance test. Then the rats were subjected to behavioural tests, and their hippocampus and cortex tissues were obtained for biochemical and morphological analyses. RESULTS: R. canina could manage glucose responsiveness by reducing post-prandial blood glucose levels, preventing weight loss, and raising serum insulin levels in T2DM-induced rats. Behavioural tests showed that R. canina significantly improves diabetes-related cognitive decline in recall and long-term memory. Treatment with R. canina significantly reversed HFD/STZ-induced increases in insulin, amyloid-ß, amyloid precursor protein levels, and acetylcholinesterase activity in the prefrontal cortex and hippocampus. Furthermore, histological analyzes revealed the protection of R. canina against neuronal disruption in the cortical and hippocampal CA3 region caused by chronic hyperglycemia. CONCLUSION: Analyzed collectively, these results suggest that R. canina can correct T2DM-related cognitive decline may be attributed to insulin pathway modulation, prevention of amyloid deposition, and increased cholinergic transmission.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Rosa , Rats , Male , Animals , Blood Glucose , Diet, High-Fat/adverse effects , Streptozocin/pharmacology , Rosa/chemistry , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Acetylcholinesterase/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Insulin/metabolism , Glucose/metabolism , Hippocampus , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Memory Disorders/psychology
2.
Biomater Adv ; 138: 212870, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35913251

ABSTRACT

Drug delivery systems that not only show efficacy through multiple therapeutic pathways but also facilitate patient drug use and exhibit a high bioavailability profile represent a promising strategy in the treatment of Alzheimer's disease (AD). Here, donepezil (DO)/memantine (MM)/curcumin (CUR)-loaded electrospun nanofibers (NFs) were produced for the treatment of AD. DSC, XRD, and FT-IR studies demonstrated the complete incorporation of the drug into PVA/PVP NFs. The disintegration profile was improved by loading the drugs in PVA/PVP with fast wetting (less than 1 s), the start of disintegration (21 s), and dispersion in 110 s. The desired properties for sublingual application were achieved with the dissolution of NFs in 240 s. The cell viability in DO/MM/CUR-loaded NFs was similar to the control group after 48 h in the cell culture. DO/MM/CUR-loaded NFs enhanced the expressions of BDNF (13.5-fold), TUBB3 (8.9-fold), Neurog2 (5.6-fold), NeuroD1 (5.8-fold), Nestin (166-fold), and GFAP (115-fold). DO/MM/CUR-loaded NFs and powder of these drugs contained in these fibers were daily administered sublingually to intracerebroventricular-streptozotocin (icv-STZ) treated rats. DO/MM/CUR-loaded NFs treatment improved the short-term memory damage and enhanced memory, learning ability, and spatial exploration talent. Results indicated that the levels of Aß, Tau protein, APP, GSK-3ß, AChE, and TNF-α were significantly decreased, and BDNF was increased by DO/MM/CUR-loaded NFs treatment compared to the AD group. In the histopathological analysis of the hippocampus and cortex, neuritic plaques and neurofibrillary nodes were not observed in the rats treated with DO/MM/CUR-loaded NFs. Taken together, the sublingual route delivery of DO/MM/CUR-loaded NFs supports potential clinical applications for AD.


Subject(s)
Alzheimer Disease , Curcumin , Nanofibers , Alzheimer Disease/drug therapy , Animals , Brain-Derived Neurotrophic Factor/therapeutic use , Curcumin/pharmacology , Donepezil/therapeutic use , Glycogen Synthase Kinase 3 beta , Memantine/therapeutic use , Rats , Spectroscopy, Fourier Transform Infrared
3.
Int J Biol Macromol ; 161: 1040-1054, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32544577

ABSTRACT

Acute wounds are a common health problem, with millions of people affected and decreased granulation tissue formation and vascularization, it is also a big challenge for wound care researchers to promote acute wound healing around the globe. This study aims to produce and characterize Satureja cuneifolia plant extract (SC)-blended with sodium alginate (SA) /polyethylene glycol (PEG) scaffolds for the potential treatment of diabetic ulcer. SA/PEG scaffolds were prepared by adding different concentrations (1, 3, and 5 wt%) of PEG to 9 wt% SA. The morphological and chemical composition of the resulting 3D printed composite scaffolds was determined using scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), respectively. Mechanical and thermal properties, swelling, and degradation behaviours were also investigated. The release kinetics of SC were performed. The antimicrobial analysis was evaluated against Escherichia coli and Staphylococcus aureus strains. 3D printed scaffolds have shown an excellent antibacterial effect, especially against gram-positive bacteria due to the antibacterial SC extract they contain. Furthermore, the cell viability of fibroblast (L929) cells on/within scaffolds were determined by the colourimetric MTT assay. The SA/PEG/SC scaffolds show a great promising potential candidate for diabetic wound healing and against bacterial infections.


Subject(s)
Alginates/chemistry , Bandages , Biocompatible Materials , Polyethylene Glycols/chemistry , Printing, Three-Dimensional , Satureja/chemistry , Wound Healing , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Chemical Phenomena , Diabetes Complications , Mechanical Phenomena , Mice , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rheology , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...