Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257039

ABSTRACT

Polymers play a crucial role in multiple industries; however, surface modification is necessary for certain applications. Exposure to non-thermal plasma provides a viable and environmentally beneficial option. Fused deposition molding utilizes biodegradable polylactic acid, although it encounters constraints in biomedical applications as a result of inadequate mechanical characteristics. This study investigates the effects of atmospheric pressure plasma generated by a dielectric barrier discharge system using helium and/or argon on the modification of polylactic acid surfaces, changes in their wettability properties, and alterations in their chemical composition. The plasma source was ignited in either He or Ar and was tailored to fit the best operational conditions for polymer exposure. The results demonstrated the enhanced wettability of the polymer surface following plasma treatment (up to 40% in He and 20% in Ar), with a marginal variation observed among treatments utilizing different gases. The plasma treatments also caused changes in the surface topography, morphology, roughness, and hydrophilicity. Plasma exposure also resulted in observable modifications in the dielectric characteristics, phase transition, and structure. The experimental findings endorse the utilization of plasma technologies at normal air pressure for environmentally friendly processing of polymer materials, specifically for applications that necessitate enhanced adhesion and have carefully selected prerequisites.

2.
Plants (Basel) ; 11(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36015483

ABSTRACT

Non-thermal plasma (NTP) is a novel and promising technique in the agricultural field that has the potential to improve vegetal material by modulating the expression of various genes involved in seed germination, plant immune response to abiotic stress, resistance to pathogens, and growth. Seeds are most frequently treated, in order to improve their ability to growth and evolve, but the whole plant can also be treated for a fast adaptive response to stress factors (heat, cold, pathogens). This review focuses mainly on the application of NTP on seeds. Non-thermal plasma treated seeds present both external and internal changes. The external ones include the alterations of seed coat to improve hydrophilicity and the internal ones refer to interfere with cellular processes that are later visible in metabolic and plant biology modifications. The usage of plasma aims to decrease the usage of fertilizers and pesticides in order to reduce the negative impact on natural ecosystem and to reduce the costs of production.

3.
Curr Issues Mol Biol ; 44(5): 1995-2014, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35678664

ABSTRACT

The use of plasma-activated media (PAM), an alternative to direct delivery of cold atmospheric plasma to cancer cells, has recently gained interest in the plasma medicine field. Paclitaxel (PTX) is used as a chemotherapy of choice for various types of breast cancers, which is the leading cause of mortality in females due to cancer. In this study, we evaluated an alternative way to improve anti-cancerous efficiency of PTX by association with PAM, the ultimate achievement being a better outcome in killing tumoral cells at smaller doses of PTX. MCF-7 and MDA-MB-231 cell lines were used, and the outcome was measured by cell viability (MTT assay), the survival rate (clonogenic assay), apoptosis occurrence, and genotoxicity (COMET assay). Treatment consisted of the use of PAM in combination with under IC50 doses of PTX in short- and long-term models. The experimental data showed that PAM had the capacity to improve PTX's cytotoxicity, as viability of the breast cancer cells dropped, an effect maintained in long-term experiments. A higher frequency of apoptotic, dead cells, and DNA fragmentation was registered in cells treated with the combined treatment as compared with those treated only with PT. Overall, PAM had the capacity to amplify the anti-cancerous effect of PTX.

4.
J Mater Chem B ; 6(22): 3674-3683, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-32254830

ABSTRACT

Plasma polymerized styrene (pPS) films were successfully synthesized by means of an atmospheric pressure plasma technique, using a mixture of argon gas and styrene vapor. The morphology and film thickness of the pPS films, deposited on 1 min argon plasma pre-treated glass substrates, were smooth and uniform without any visible features across the whole length of the substrates, and the films displayed a water contact angle of ∼83°. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) analysis confirmed the presence of oxygen-containing groups and the intact aromatic ring in the pPS coating. The obtained pPS films were stable for at least 30 days in air without any visible morphological degradation or chemical changes. However, the formation of a topographical pattern with micrometer lateral size and nanometer depth level was observed upon immersion in aqueous media for 72 hours. Micropore formation was believed to originate from the solubility of low cross-linked oligomers and their subsequent extraction in aqueous media. The influence of the microstructured pPS surface in mediating the attachment of eukaryotic and prokaryotic cells was further investigated. The micro-structured pPS surface influenced the adhesion and proliferation of mammalian cells. Furthermore, we could demonstrate that these films were efficient in the prevention of Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus epidermidis (S. epidermis) adhesion and biofilm formation. Importantly, the viability of non-adherent cells and of planktonic bacteria was not affected. Post-coating of the microstructured pPS with biocompatible polydopamine did not impact on the antibacterial properties of the surface, suggesting that the polymer topography was the dominant factor. The non-biocidal pPS coating can be useful in applications where micro-organism colonization and biofilm formation need to be prevented, such as food packaging and medical equipment.

5.
Biointerphases ; 10(2): 029515, 2015 Jun 06.
Article in English | MEDLINE | ID: mdl-25947389

ABSTRACT

Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.


Subject(s)
Biopolymers/metabolism , Electricity , Epithelial Cells/drug effects , Escherichia coli/drug effects , Helium/metabolism , Plasma Gases , Water/chemistry , Air , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Epithelial Cells/physiology , Escherichia coli/physiology , HeLa Cells , Humans , Microbial Viability/drug effects , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...