Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 9026, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227745

ABSTRACT

Characterization of porous media is essential in a wide range of biomedical and industrial applications. Microstructural features can be probed non-invasively by diffusion magnetic resonance imaging (dMRI). However, diffusion encoding in conventional dMRI may yield similar signatures for very different microstructures, which represents a significant limitation for disentangling individual microstructural features in heterogeneous materials. To solve this problem, we propose an augmented multidimensional diffusion encoding (MDE) framework, which unlocks a novel encoding dimension to assess time-dependent diffusion specific to structures with different microscopic anisotropies. Our approach relies on spectral analysis of complex but experimentally efficient MDE waveforms. Two independent contrasts to differentiate features such as cell shape and size can be generated directly by signal subtraction from only three types of measurements. Analytical calculations and simulations support our experimental observations. Proof-of-concept experiments were applied on samples with known and distinctly different microstructures. We further demonstrate substantially different contrasts in different tissue types of a post mortem brain. Our simultaneous assessment of restriction size and shape may be instrumental in studies of a wide range of porous materials, enable new insights into the microstructure of biological tissues or be of great value in diagnostics.

2.
J Magn Reson ; 230: 165-75, 2013 May.
Article in English | MEDLINE | ID: mdl-23542743

ABSTRACT

Spectral editing with CP and INEPT in (13)C MAS NMR enables identification of rigid and mobile molecular segments in concentrated assemblies of surfactants, lipids, and/or proteins. In order to get stricter definitions of the terms "rigid" and "mobile", as well as resolving some ambiguities in the interpretation of CP and INEPT data, we have developed a theoretical model for calculating the CP and INEPT intensities as a function of rotational correlation time τc and C-H bond order parameter SCH, taking the effects of MAS into account. According to the model, the range of τc can at typical experimental settings (5kHz MAS, 1ms ramped CP at 80-100kHz B1 fields) be divided into four regimes: fast (τc<1ns), fast-intermediate (τc≈0.1µs), intermediate (τc≈1µs), and slow (τc>0.1ms). In the fast regime, the CP and INEPT intensities are independent of τc, but strongly dependent on |SCH|, with a cross-over from dominating INEPT to dominating CP at |SCH|>0.1. In the intermediate regime, neither CP nor INEPT yield signal on account of fast T1ρ and T2 relaxation. In both the fast-intermediate and slow regimes, there is exclusively CP signal. The theoretical predictions are tested by experiments on the glass-forming surfactant n-octyl-ß-d-maltoside, for which τc can be varied continuously in the nano- to millisecond range by changing the temperature and the hydration level. The atomistic details of the surfactant dynamics are investigated with MD simulations. Based on the theoretical model, we propose a procedure for calculating CP and INEPT intensities directly from MD simulation trajectories. While MD shows that there is a continuous gradient of τc from the surfactant polar headgroup towards the methyl group at the end of the hydrocarbon chain, analysis of the experimental CP and INEPT data indicates that this gradient gets steeper with decreasing temperature and hydration level, eventually spanning four orders of magnitude at completely dry conditions.


Subject(s)
Algorithms , Liquid Crystals/analysis , Liquid Crystals/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Carbon Isotopes/analysis , Carbon Isotopes/chemistry , Computer Simulation , Protons
3.
Biochim Biophys Acta ; 1768(11): 2647-59, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17927949

ABSTRACT

The outermost layer of skin, stratum corneum (SC), functions as the major barrier to diffusion. SC has the architecture of dead keratin filled cells embedded in a lipid matrix. This work presents a detailed study of the hydration process in extracted SC lipids, isolated corneocytes and intact SC. Using isothermal sorption microcalorimetry and relaxation and wideline (1)H NMR, we study these systems at varying degrees of hydration/relative humidities (RH) at 25 degrees C. The basic findings are (i) there is a substantial swelling both of SC lipids, the corneocytes and the intact SC at high RH. At low RHs corneocytes take up more water than SC lipids do, while at high RHs swelling of SC lipids is more pronounced than that of corneocytes. (ii) Lipids in a fluid state are present in both extracted SC lipids and in the intact SC. (iii) The fraction of fluid lipids is lower at 1.4% water content than at 15% but remains virtually constant as the water content is further increased. (iv) Three exothermic phase transitions are detected in the SC lipids at RH=91-94%, and we speculate that the lipid re-organization is responsible for the hydration-induced variations in SC permeability. (v) The hydration causes swelling in the corneocytes, while it does not affect the mobility of solid components (keratin filaments).


Subject(s)
Epidermal Cells , Epidermis/chemistry , Lipids/chemistry , Water/chemistry , Animals , Calorimetry , Cell Separation , Magnetic Resonance Spectroscopy , Phase Transition , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...