Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36676917

ABSTRACT

Structured catalytic membranes with high porosity and a low pressure drop are particularly suitable for industrial processes carried out at high space velocities. One of these processes is the catalytic total oxidation of volatile organic compounds, which is an economically feasible and environmentally friendly way of emission abatement. Noble metal catalysts are typically preferred due to high activity and stability. In this paper, the preparation of a thermally stable polybenzimidazole electrospun membrane, which can be used as a support for a platinum catalyst applicable in the total oxidation of volatile organic compounds, is reported for the first time. In contrast to commercial pelletized catalysts, high porosity of the membrane allowed for easy accessibility of the platinum active sites to the reactants and the catalytic bed exhibited a low pressure drop. We have shown that the preparation conditions can be tuned in order to obtain catalysts with a desired platinum particle size. In the gas-phase oxidation of ethanol, acetone, and toluene, the catalysts with Pt particle sizes 2.1 nm and 26 nm exhibited a lower catalytic activity than that with a Pt particle size of 12 nm. Catalysts with a Pt particle size of 2.1 nm and 12 nm were prepared by equilibrium adsorption, and the higher catalytic activity of the latter catalyst was ascribed to more reactive adsorbed oxygen species on larger Pt nanoparticles. On the other hand, the catalyst with a Pt particle size of 26 nm was prepared by a solvent evaporation method and contained less active polycrystalline platinum. Last but not least, the catalyst containing only 0.08 wt.% of platinum achieved high conversion (90%) of all the model volatile organic compounds at moderate temperatures (lower than 335 °C), which is important for reducing the costs of the abatement technology.

2.
Environ Sci Pollut Res Int ; 29(4): 5172-5183, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34417699

ABSTRACT

The aim of this work was to develop a novel method for the preparation of structured Co-Mn mixed oxide catalysts: deposition on stainless steel meshes by hydrothermal synthesis. The use of meshes enabled the deposition of a thin layer of the active phase, which significantly suppressed the influence of internal diffusion. Consequently, the prepared catalysts exhibited from 48 to 114 times higher catalytic activity in ethanol oxidation than the commercial pelleted Co-Mn-Al catalyst. Moreover, we have shown that their catalytic activity correlated with the proportion of surface oxygen vacancies determined by XPS. Finally, the outstanding activity of the catalyst with Co:Mn ratio of 0.5 was ascribed to the mutual effect of high number of oxygen vacancies and exceptional redox properties.


Subject(s)
Oxides , Volatile Organic Compounds , Catalysis , Oxidation-Reduction , Stainless Steel
3.
Environ Sci Pollut Res Int ; 27(33): 42182-42188, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32888153

ABSTRACT

In this study, we report for the first time a novel type of sorbent that can be used for mercury adsorption from the air-based off-gasses-vermiculite impregnated with alkali polysulfides and thiosulfates. In contrast to other sorbents, vermiculite exhibits superior thermal stability in air and low adsorption capacity for organic vapors. This allows for a more favorable design of the soil remediation unit-direct coupling of thermal desorber with catalytic oxidizer using air as a carrier gas. In the bench-scale test at 180 °C, the sulfur/vermiculite sorbent exhibited significantly higher efficiency for the adsorption of mercury vapor from the off-gasses than the commercial sulfur/activated carbon sorbent at its highest operating temperature (120 °C). The average mercury concentration in the adsorber off-gas decreased from 1.634 mg/m3 for the sulfur/activated carbon to 0.008 mg/m3 achieved with impregnated vermiculite. The total concentration of organic compounds in the soil after thermal desorption was below the detection limit of the employed analytical method.


Subject(s)
Mercury , Sulfur , Adsorption , Aluminum Silicates , Gases
4.
Environ Sci Pollut Res Int ; 27(7): 7608-7617, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31885057

ABSTRACT

Magnetron sputtering was employed for the deposition of cobalt oxide thin films on stainless steel meshes. Catalysts prepared by sputtering in inert and oxidation atmosphere were compared with those obtained by electrochemical deposition and hydrothermal synthesis. Systematic characterization using X-ray diffraction, scanning electron microscopy, N2 physisorption, infrared spectroscopy, Raman spectroscopy, and temperature-programmed reduction by hydrogen allowed detailed monitoring of their physicochemical properties. Ethanol gas-phase oxidation was employed as a model reaction to reveal the catalytic performance of the catalysts. It was shown that the catalyst prepared by magnetron sputtering in oxidation atmosphere exhibited the best mechanical stability among all studied catalysts. Moreover, its catalytic activity was 18 times higher than that of pelletized commercial cobalt oxide.


Subject(s)
Cobalt , Oxides , Volatile Organic Compounds , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...