Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 115(2): 299-308, 2024 02.
Article in English | MEDLINE | ID: mdl-37971208

ABSTRACT

A physiologically-based pharmacokinetic (PBPK) model was developed to simulate plasma concentrations of tucatinib (TUKYSA®) after single-dose or multiple-dose administration of 300 mg b.i.d. orally. This PBPK model was subsequently applied to support evaluation of drug-drug interaction (DDI) risk as a perpetrator resulting from tucatinib inhibition of CYP3A4, CYP2C8, CYP2C9, P-gp, or MATE1/2-K. The PBPK model was also applied to support evaluation of DDI risk as a victim resulting from co-administration with CYP3A4 or CYP2C8 inhibitors, or a CYP3A4 inducer. After refinement with clinical DDI data, the final PBPK model was able to recover the clinically observed single and multiple-dose plasma concentrations for tucatinib when tucatinib was administered as a single agent in healthy subjects. In addition, the final model was able to recover clinically observed plasma concentrations of tucatinib when administered in combination with itraconazole, rifampin, or gemfibrozil as well as clinically observed plasma concentrations of probe substrates of CYP3A4, CYP2C8, CYP2C9, P-gp, or MATE1/2-K. The PBPK model was then applied to prospectively predict the potential perpetrator or victim DDIs with other substrates, inducers, or inhibitors. To simulate a potential interaction with a moderate CYP2C8 inhibitor, two novel PBPK models representing a moderate CYP2C8 inhibitor and a sensitive CYP2C8 substrate were developed based on the existing PBPK models for gemfibrozil and rosiglitazone, respectively. The simulated population geometric mean area under the curve ratio of tucatinib with a moderate CYP2C8 inhibitor ranged from 1.98- to 3.08-fold, and based on these results, no dose modifications were proposed for moderate CYP2C8 inhibitors for the tucatinib label.


Subject(s)
Cytochrome P-450 CYP2C8 Inhibitors , Gemfibrozil , Oxazoles , Pyridines , Quinazolines , Humans , Gemfibrozil/pharmacokinetics , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP2C8 , Cytochrome P-450 CYP2C9 , Drug Interactions , Models, Biological , Cytochrome P-450 CYP3A Inhibitors
2.
Drugs R D ; 23(4): 411-419, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751113

ABSTRACT

BACKGROUND AND OBJECTIVE: Tucatinib is a selective tyrosine kinase inhibitor of the human epidermal growth factor receptor 2 (HER2) approved to treat metastatic HER2-positive breast and colorectal cancers. The International Council for Harmonisation of Technical Requirements for Human Use (ICH) E14 guideline mandates that new drugs are assessed for potential effects on cardiac repolarization through electrocardiogram (ECG) evaluation in a QT/corrected QT (TQT) study. METHODS: We evaluated the effect of tucatinib on cardiac repolarization in healthy volunteers in a phase I, randomized, partially double-blind, placebo-and positive-controlled three-period crossover study. The primary endpoint was the placebo-corrected change from baseline in QT interval values, corrected for heart rate using Fridericia's method (ΔΔQTcF). RESULTS: After achieving steady-state tucatinib exposures with 300 mg twice daily, the observed ΔΔQTcF ranged from -2.9 msec at 2 hours post-dose to 0 msec at 4 hours post-dose. The upper bound of the 90% confidence interval (CI) was below 5 ms at all post-dose timepoints. Assay sensitivity was confirmed as the lower bound of the 90% CI and was >5 ms following moxifloxacin dosing. As the mean ΔΔQTcF of tucatinib was predicted to be -  1.80 ms (90% CI -  3.90, 0.30) at clinically relevant tucatinib concentrations (511 ng/mL), an effect of tucatinib on QTcF exceeding 10 ms was excluded within observed ranges of tucatinib (up to ~1000 ng/mL). Tucatinib had no clinically relevant effect on heart rate or cardiac conduction. The safety profile of tucatinib was manageable after multiple doses. CONCLUSION: Tucatinib had no clinically relevant effects on studied ECG parameters. This study constitutes a clearly negative TQT study per ICH E14 guidance. CLINICAL TRIAL REGISTRATION: This trial (NCT03777761) was registered on 17 December 2018.


Subject(s)
Electrocardiography , Long QT Syndrome , Humans , Healthy Volunteers , Cross-Over Studies , Fluoroquinolones , Dose-Response Relationship, Drug , Double-Blind Method , Heart Rate
3.
Clin Pharmacokinet ; 61(12): 1761-1770, 2022 12.
Article in English | MEDLINE | ID: mdl-36471222

ABSTRACT

BACKGROUND AND OBJECTIVE: Tucatinib, a highly selective tyrosine kinase inhibitor of the human epidermal growth factor receptor 2 (HER2) approved for HER2-positive metastatic breast cancer, is cleared by hepatic metabolism and subsequent biliary excretion. Liver disease can alter drug disposition and pharmacokinetics (PK). The objective of this study is to characterize PK and safety of tucatinib in volunteers with hepatic impairment. METHODS: This Phase 1 study compared the PK and safety of a single 300-mg oral dose of tucatinib in volunteers with mild, moderate, and severe hepatic impairment (Child-Pugh A/B/C) to healthy volunteers matched for sex, age, and body mass index. Pharmacokinetic parameters were determined for tucatinib and its predominant metabolite ONT-993. RESULTS: Compared with healthy volunteers, tucatinib exposure was similar in volunteers with mild impairment and increased in those with moderate or severe impairment without reaching statistical significance. Respective fold increases in geometric mean ratios for AUC0-t and AUC0-∞ were 1.13 and 1.15 in moderate impairment, and 1.43 and 1.61 in severe impairment compared with healthy volunteers. Three treatment-emergent adverse events (nausea, dermatitis, and increased transaminases) were reported in three volunteers and showed no obvious association with hepatic impairment status. CONCLUSION: The 1.61-fold geometric mean ratio AUC0-∞ increase in volunteers with severe hepatic impairment supports the recommendation in the tucatinib prescribing information to reduce the dose from 300 mg twice daily to 200 mg twice daily in patients with severe impairment; no dose adjustment is recommended for patients with mild or moderate hepatic impairment. This trial (NCT03722823) was registered on October 29, 2018.


Subject(s)
Breast Neoplasms , Liver Diseases , Female , Humans , Area Under Curve , Liver Diseases/metabolism , Protein Kinase Inhibitors/adverse effects
4.
J Clin Pharmacol ; 61(4): 461-471, 2021 04.
Article in English | MEDLINE | ID: mdl-32989831

ABSTRACT

Tucatinib is a potent tyrosine kinase inhibitor selective for human epidermal growth factor receptor 2 (HER2) approved by the US Food and Drug Administration for the treatment of HER2-positive metastatic breast cancer and in development for other HER2-positive solid tumors. Modest, reversible serum creatinine (SCr) elevations have been observed in tucatinib clinical trials. SCr is conveyed by the renal drug transporters organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1) and 2-K (MATE2-K) and can increase in the presence of inhibitors of these transporters. In vitro, tucatinib inhibited OCT2-, MATE1-, and MATE2-K-mediated transport of metformin, with IC50 values of 14.7, 0.340, and 0.135 µM, respectively. Tucatinib also inhibited OCT2- and MATE1-mediated transport of creatinine, with IC50 values of 0.107 and 0.0855 µM, respectively. A phase 1 study with metformin administered orally in the absence and presence of tucatinib was conducted in 18 healthy subjects. Renal function was assessed by measuring glomerular filtration rate (GFR; based on iohexol plasma clearance) and endogenous markers (SCr, cystatin C-based estimated glomerular filtration rate [eGFR]) with and without tucatinib. Metformin exposure increased (1.4-fold) and renal clearance decreased (29.99-17.64 L/h) with tucatinib, with no effect on metformin maximum concentration. Creatinine clearance transiently decreased 23% with tucatinib. GFR and eGFR, which are unaffected by OCT2 and/or MATE1/2-K transport, were unchanged with tucatinib. These data demonstrate that tucatinib inhibits OCT2- and MATE1/2-K-mediated tubular secretion of creatinine, which may manifest as mild SCr elevations that are not indicative of renal impairment.


Subject(s)
Antineoplastic Agents/pharmacology , Metformin/pharmacokinetics , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transporter 2/antagonists & inhibitors , Oxazoles/pharmacology , Pyridines/pharmacology , Quinazolines/pharmacology , Adolescent , Adult , Aged , Animals , Biological Transport/drug effects , Creatinine/blood , Cross-Over Studies , Dogs , Female , Glomerular Filtration Rate , HEK293 Cells , Healthy Volunteers , Humans , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells , Male , Middle Aged , Receptor, ErbB-2/antagonists & inhibitors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...