Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Trop ; 189: 84-93, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30308208

ABSTRACT

Chloroquine (CQ) has been used for decades as the primary chemotherapeutic drug for the treatment of malaria. The emergence of drug resistance in Plasmodium falciparum has been considered to be because of the excessive use of antimalarial drugs worldwide. Moreover, the intense distribution and prevalence of chloroquine-resistant strains in endemic regions has aided the incidence of more complications to malaria treatment and control. Due to the lack of literature that portrays evident molecular mechanisms of drug resistance, it has been difficult to understand the drug resistance conferred by Plasmodium species. Intensive research on CQ drug resistance has identified the association of P. falciparum chloroquine resistance transporter protein (PfCRT), which belongs to the drug/metabolite transporter and EamA-like superfamily. Additionally, it has shown that K76 T mutation in PfCRT protein has mainly attributed to CQ resistance than other mutations. This study deals with the development of an in silico model of the PfCRT protein and its interaction with the CQ ligand molecule as well as the biochemical and biophysical characterization of the transmembrane domain 1 (TMD 1) peptide of the PfCRT protein. The physiochemical analysis of the PfCRT protein identified basic differences between the wild and mutant forms of the protein, as well as identifying the high hydrophobic nature of the mutant-type protein. The tertiary structure of the PfCRT protein was predicted and interaction with CQ revealed different active pocket binding regions in both the wild and mutant form of PfCRT proteins. The CQ2+ molecule interacts with TMD 10 of the wild-type PfCRT protein, whereas it interacts with TMD 1 of the mutant-type protein. Studies on the TMD 1 peptide revealed the insertion of the peptide in the micelles adopting stable alpha-helical structure. Binding studies with the CQ molecule detected high binding affinity toward the mutant-type TMD 1 peptide rather than the wild-type, thus confirming that the TMD 1 peptide is involved in substrate selectivity. Our findings help to characterize the structure of the PfCRT protein and the role played by the TMD 1 region in CQ resistance using in silico and biochemical approaches. Molecular docking and ligand binding studies confirm that TMD 1 is involved in substrate selectivity and aids in CQ efflux, thereby contributing to the parasite's CQ drug resistance mechanism.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance , Membrane Transport Proteins/metabolism , Models, Molecular , Protozoan Proteins/metabolism , Animals , Computer Simulation , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology
2.
J Biomol Struct Dyn ; 36(7): 1834-1852, 2018 May.
Article in English | MEDLINE | ID: mdl-28571517

ABSTRACT

Ptf1-p48 (Pancreas specific transcription factor 1a) is transcription regulatory protein known for the activation of exocrine specific genes. Downregulation of its expression formulates early stages of pancreatic adenocarcinoma as deduced by its association with oncogenic bHLH (Basic Helix-Loop-Helix) protein ID3 (Inhibitor of DNA binding 3) protein whose overexpression induces cytoplasmic mislocalization of Ptf1-p48. The precise mechanism and/or functional role of Ptf1-p48in promoting pancreatic cancer is vague. The structural features of the Ptf1-p48 and its dimerization with E47 (Transcription factor E2-alpha) and ID3 mediated by their HLH (Helix-Loop-Helix) domain were perceived through MD (Molecular Dynamics) simulations of 50 ns. The interactions formed by the HLH domain in both Ptf1-E47 and Ptf1-ID3 complexes are favored by the synergistic movement of their domain helices. Accordingly, in the Ptf1-E47 complex α7 of Ptf1-p48 and α1 helix of E47 along with the loop residues of their HLH domain exhibit transitions marked by inward movement toward each other and forms polar and charged interactions. In the Ptf1-ID3 complex, α8 of Ptf1-p48 moves toward the α3 helix of ID3 and forms hydrogen bonds. The interface analysis also reveals better interface in the Ptf1-p48 complex than the Ptf1-ID3 evident by energetics and number of hydrogen bonds. The interactions in each of these complexes, supported by angular displacement and mode vector analyzes, comprehensibly describe the considerable structural changes induced upon dimer formation. It thereby gives an insight into the interfaces that could help in designing of potential inhibitors for ID3 to curb the cancer cell growth.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/chemistry , Inhibitor of Differentiation Proteins/chemistry , Transcription Factors/chemistry , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Domains
3.
Biochem Biophys Rep ; 5: 180-190, 2016 Mar.
Article in English | MEDLINE | ID: mdl-28955822

ABSTRACT

Inhibitor of DNA binding protein 3 (ID3) has long been characterized as an oncogene that implicates its functional role through its Helix-Loop-Helix (HLH) domain upon protein-protein interaction. An insight into the dimerization brought by this domain helps in identifying the key residues that favor the mechanism behind it. Molecular dynamics (MD) simulations were performed for the HLH proteins ID3 and Transcription factor E2-alpha (E2A/E12) and their ensemble complex (ID3-E2A/E12) to gather information about the HLH domain region and its role in the interaction process. Further evaluation of the results by Principal Component Analysis (PCA) and Free Energy Landscape (FEL) helped in revealing residues of E2A/E12: Lys570, Ala595, Val598, and Ile599 and ID3: Glu53, Gln63, and Gln66 buried in their HLH motifs imparting key roles in dimerization process. Furthermore the T-pad analysis results helped in identifying the key fluctuations and conformational transitions using the intrinsic properties of the residues present in the domain region of the proteins thus specifying their crucial role towards molecular recognition. The study provides an insight into the interacting mechanism of the ID3-E2A/E12 complex and maps the structural transitions arising in the essential conformational space indicating the key structural changes within the helical regions of the motif. It thereby describes how the internal dynamics of the proteins might regulate their intrinsic structural features and its subsequent functionality.

4.
Cell Signal ; 27(4): 739-55, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25499977

ABSTRACT

ARHI, a putative tumor suppressor protein with unique 32 amino acid extension in the N-terminal region, differs from oncogenes Ras and Rap, negatively regulates STAT3 signaling and inhibits the migration of ovarian cancer cells. ARHI associates directly with STAT3, also forms complex with importinß, and prevents formation of RanGTPase-importinß complex, which is essential for transporting STAT3 into the nucleus. Hence, the structural aspects pertaining to ARHI mediated inhibition of STAT3 translocation can provide hints on the regulation of STAT3 signaling mechanism. Accordingly, in the present study, the structure of ARHI was predicted and its transition from inactive to active state studied using MD simulations and free energy landscape analysis. The transition of ARHI is marked by the movement of switch I region towards γ-phosphate of GTP, in addition, the hydrophobic interaction between N-terminal helix and switch II region of ARHI accounts for its low intrinsic GTPase activity. Further, the protein-protein interaction studies reveal that the residues of N-terminal helix, effector domain, P-loop and G box motif of ARHI actively form polar and non-polar interaction with NTD of STAT3 and make them compact thereby rendering STAT3 inaccessible for Ran-importinß mediated translocation. On the other hand, ARHI competes with RanGTPase and interacts with importinß via basic-acidic patch interaction, which leads to inhibition of STAT3 translocation. The interacting residues involved for this structural mechanism would be instrumental in designing inhibitors for STAT3, which mimics ARHI thereby leading to the suppression of cancer cell growth.


Subject(s)
STAT3 Transcription Factor/metabolism , Signal Transduction , beta Karyopherins/metabolism , rho GTP-Binding Proteins/metabolism , Amino Acid Sequence , Humans , Molecular Dynamics Simulation , Protein Conformation , Protein Interaction Maps , Protein Stability , STAT3 Transcription Factor/chemistry , beta Karyopherins/chemistry , rho GTP-Binding Proteins/chemistry
5.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): o284, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23424556

ABSTRACT

In the title compound, C(13)H(9)NO(6), the coumarin system has the benzene ring aligned at 0.61 (18)° with respect to the pyrone ring. An intra-molecular O-H⋯O hydrogen bond stabilizes the mol-ecular conformation and a C-H⋯O contact also occurs. In the crystal, weak C-H⋯O inter-actions link the mol-ecules, forming inversion dimers.

6.
Bioinformation ; 8(16): 742-8, 2012.
Article in English | MEDLINE | ID: mdl-23055624

ABSTRACT

UNLABELLED: Bestrophin, an integral membrane protein existing in basolateral region of the retina is a propitious target for drug discovery. Mutations in the Bestrophin protein cause Best Vitelliform Macular Dystrophy (BVMD) leading to retinal damages and loss of visual acuity. Owing to the lack of three dimensional structure and related structural homologs in the protein data bank, we modeled the bestrophin protein using Robetta ab initio method. Further, no treatment is available for the disease. In this situation, anthocyanins from natural sources are reported to combat retinal damages. Hence, we identified anthocyanins from Syzygium cumini fruit skin using Electrospray Ionization tandem mass spectrometry. These compounds were docked into the predicted bestrophin model to study the interactions within the active site. The results may provide a valuable insight into the structure of bestrophin and efficacy of anthocyanins in molecular docking studies. ABBREVIATIONS: PTP - Putative transmembrane proteins, VMD - Vitelliform macular dystrophy, BVMD - Best's vitelliform macular dystrophy, RPE - Retinal pigment epithelium, ESI-MS/MS - Electrospray Ionization Tandem Mass Spectrometry, UNIPROT - Universal Protein Resource, PSIPRED - Protein secondary structure prediction, TMH - Transmembrane Helices, SCFS - Syzygium cumini fruit skin DP - Declustering Potential IFD - Induced Fit Docking.

7.
J Mol Model ; 18(11): 4865-84, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22714536

ABSTRACT

Among the many abnormally expressed proteins in ovarian cancer, the prominent cancer in women, ID1 (inhibitors of DNA binding protein 1) is a potential one among other several targets. Interaction of ID1 with ETS-1 (transcriptional activator of p16(INK4a)) suppresses the transcription of p16(INK4a) and causes abnormal cell proliferation. A peptide aptamer (ID1/3-PA7) has been designed to prevent this interaction and thereby leading to the transcription of p16(INK4a). However, the structural basis behind the molecular interaction of ID1 with ETS-1 (agonist) and ID1/3-PA7 (antagonist) is poorly understood. In order to understand this structural recognition and their interaction mechanism, in silico methods were used. From this interaction analysis, the residues of ETS-1 involved in interaction with the p16(INK4a) promoter were found to be targeted by ID1. Subsequently, ETS-1 binding residues of ID1 were found to be targeted by its aptamer- ID1/3-PA7. These results suggest that both ETS-1 and ID1/3-PA7 binds at the same region harbored by the residues-H97, D100, R103, D104, L107, A144, C145, D149, D150 and C154 of ID1. All these observations correlate with the experimental reports, suggesting that the identified residues might play a crucial role in promulgating the oncogenic effects of ID1. In silico alanine scanning mutagenesis also confirms the role of identified hot spot residues in p16(INK4a) regulation. Finally, the molecular dynamic simulation studies reveal the prolonged stability of the aforementioned interacting complexes. The obtained results throw light on the structure and residues of ID1 involved in transcriptional regulation of p16(INK4a).


Subject(s)
Aptamers, Peptide/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Inhibitor of Differentiation Protein 1/antagonists & inhibitors , Inhibitor of Differentiation Protein 1/chemistry , Proto-Oncogene Protein c-ets-1/metabolism , Aptamers, Peptide/pharmacology , Binding Sites , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p16/genetics , Drug Design , Female , Humans , Inhibitor of Differentiation Protein 1/agonists , Inhibitor of Differentiation Protein 1/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Ovarian Neoplasms/drug therapy , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Protein c-ets-1/chemistry , Transcription, Genetic
8.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 4): o956, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21754221

ABSTRACT

In the title compound, C(15)H(14)N(4)O, the pyrazole ring is aligned at 88.23 (4)° with respect to the aromatic ring and at 3.75 (4)° with respect to the pyran ring. In the crystal, N-H⋯N hydrogen bonds link adjacent mol-ecules into a linear chain motif. C-H⋯N inter-actions are also observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...