Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209889

ABSTRACT

Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. In our research, we focused on the formation of composite materials produced by the dispersion of titanium(IV)-oxo complexes (TOCs) in poly(ε-caprolactone) (PCL) matrix, which exhibit optimal antimicrobial activity. TOCs, of the general formula [Ti4O2(OiBu)10(O2CR')2] (R' = PhNH2 (1), C13H9 (2)) were synthesized as a result of the direct reaction of titanium(IV) isobutoxide and 4-aminobenzoic acid or 9-fluorenecarboxylic acid. The microcrystalline powders of (1) and (2), whose structures were confirmed by infrared (IR) and Raman spectroscopy, were dispersed in PCL matrixes. In this way, the composites PCL + nTOCs (n = 5 and 20 wt.%) were produced. The structure and physicochemical properties were determined on the basis of Raman microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electron paramagnetic resonance spectroscopy (EPR), and UV-Vis diffuse reflectance spectroscopy (DRS). The degree of TOCs distribution in the polymer matrix was monitored by scanning electron microscopy (SEM). The addition of TOCs micro grains into the PCL matrix only slightly changed the thermal and mechanical properties of the composite compared to the pure PCL. Among the investigated PCL + TOCs systems, promising antibacterial properties were confirmed for samples of PCL + n(2) (n = 5, 20 wt.%) composites, which simultaneously revealed the best photocatalytic activity in the visible range.


Subject(s)
Anti-Infective Agents/chemical synthesis , Organometallic Compounds/chemical synthesis , Polyesters/chemistry , Titanium/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Calorimetry, Differential Scanning , Catalysis , Microscopy, Electron, Scanning , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Photochemical Processes , Spectroscopy, Fourier Transform Infrared , Tensile Strength , X-Ray Diffraction
2.
Materials (Basel) ; 13(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532021

ABSTRACT

The last twenty years have been a period of intense investigations of materials based on titanium dioxide, which have unique properties and functionalities, and which can be used in various areas of medicine. As a part of this issue, the results of our works for the assessment of the photocatalytic activity of titanium dioxide nanocoatings of different nanoarchitecture (nanoporous, nanotubular, nanosponge-like and nanofibrous examples), which were earlier checked in terms of their biocompatibility and usability for the modification of medical devices' surfaces, are presented. The studied materials were produced on the surface of Ti6Al4V substrates using electrochemical and chemical oxidation methods. The activity of produced titania materials was studied on the base of the methylene blue (MB) degradation effect, in accordance to ISO 10678:2010. In our works, we have focused on the analysis of the correlation between the photocatalytic activity of nanoarchitecturally different TiO2 coatings, their morphology and structure. The obtained results prove that all studied coatings, both amorphous and amorphous containing crystalline domains, revealed photocatalytic activity in the photoinduced degradation of the organic pollution standard. This activity may be an additional advantage of medical device coatings, being adequate for use in sterilization processes applying UVA light.

3.
Nanomaterials (Basel) ; 7(8)2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28933732

ABSTRACT

Titania nanotube (TNT) coatings were produced using low-potential anodic oxidation of Ti6Al4V substrates in the potential range 3-20 V. They were analysed by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The wettability was estimated by measuring the contact angle when applying water droplets. The bioactivity of the TNT coatings was established on the basis of the biointegration assay (L929 murine fibroblasts adhesion and proliferation) and antibacterial tests against Staphylococcus aureus (ATCC 29213). The photocatalytic efficiency of the TNT films was studied by the degradation of methylene blue under UV irradiation. Among the studied coatings, the TiO2 nanotubes obtained with the use of 5 V potential (TNT5) were found to be the most appropriate for medical applications. The TNT5 sample possessed antibiofilm properties without enriching it by additional antimicrobial agent. Furthermore, it was characterized by optimal biocompatibility, performing better than pure Ti6Al4V alloy. Moreover, the same sample was the most photocatalytically active and exhibited the potential for the sterilization of implants with the use of UV light and for other environmental applications.

4.
Nanomaterials (Basel) ; 7(4)2017 Apr 22.
Article in English | MEDLINE | ID: mdl-28441733

ABSTRACT

Morphologically different titania coatings (nanofibers (TNFs), nanoneedles (TNNs), and nanowires (TNWs)) were studied as potential biomedical materials. The abovementioned systems were produced in situ on Ti6Al4V substrates via direct oxidation processes using H2O2 and H2O2/CaCl2 agents, and via thermal oxidation in the presence of Ar and Ar/H2O2. X-ray diffraction and Raman spectroscopy have been used to structurally characterize the produced materials. The morphology changes on the titanium alloy surface were investigated using scanning electron microscopy. The bioactivity of the samples has been estimated by the analysis of the produced titania coatings' biocompatibility, and by the determination of their ability to reduce bacterial biofilm formation. The photoactivity of the produced nanocoatings was also analyzed, in order to determine the possibility of using titania coated implant surfaces in the sterilization process of implants. Photocatalytic activity was estimated using the methylene blue photodegradation kinetics, in the presence of UV light.

SELECTION OF CITATIONS
SEARCH DETAIL
...