Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764345

ABSTRACT

Alternaria brassicicola was found on pieces of chopped, bagged kale held 1 week beyond the typical postharvest storage period. Three of 11 Alternaria isolates were identified as A. brassicicola based on species-specific primers and multilocus genotyping with the translation elongation factor 1-alpha (tef1), RNA polymerase second largest subunit (rpb2), and glyceraldehyde-3-phosphate dehydrogenase (gapdh) gene regions. Two isolates of A. alternata, two isolates of A. tenuissima, and four isolates comprising two unidentified species also were found. A. brassicicola also was found in a production field on the same farm. In the greenhouse, only A. brassicicola isolates caused disease on inoculated kale plants. As previously reported, A. brassicicola isolates had larger colony diameters on semi-selective CW medium than the non-pathogenic isolates. Black spot caused by A. brassicicola on kale leaves in the field can lead to black spot on harvested kale.

2.
Theor Appl Genet ; 136(4): 91, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37009963

ABSTRACT

KEY MESSAGE: This is the first identification of QTLs underlying resistance in Cucumis melo to an isolate of Pseudoperonospora cubensis identified as Clade 2/mating type A1. Pseudoperonospora cubensis, causal organism of cucurbit downy mildew (CDM), causes severe necrosis and defoliation on Cucumis melo (melon). A recombinant inbred line population (N = 169) was screened against an isolate of P. cubensis (Clade 2/mating type A1) in replicated greenhouse and growth chamber experiments. SNPs (n = 5633 bins) identified in the RIL population were used for quantitative trait loci (QTL) mapping. A single major QTL on chromosome 10 (qPcub-10.3-10.4) was consistently associated with resistance across all experiments, while a second major QTL on chromosome 8 (qPcub-8.3) was identified only in greenhouse experiments. These two major QTLs were identified on the same chromosomes (8 and 10) but in different locations as two major QTLs (qPcub-8.2 and qPcub-10.1) previously identified for resistance to P. cubensis Clade 1/mating type A2. Kompetitive allele-specific PCR (KASP) markers were developed for these four major QTLs and validated in the RIL population through QTL mapping. These markers will provide melon breeders a high-throughput genotyping toolkit for development of melon cultivars with broad tolerance to CDM.


Subject(s)
Cucumis melo , Cucurbitaceae , Oomycetes , Peronospora , Quantitative Trait Loci , Cucumis melo/genetics , Plant Diseases/genetics , Cucurbitaceae/genetics
3.
Phytopathology ; 112(8): 1651-1658, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35263164

ABSTRACT

A nationwide, quantitative synthesis of fungicide efficacy data on management of cucurbit downy mildew (CDM) caused by Pseudoperonospora cubensis is needed to broadly evaluate fungicide performance. Three-level meta-analysis, three-level meta-regression, and network meta-analyses were conducted on data from 46 cucumber (Cucumis sativus) CDM fungicide efficacy studies conducted in the eastern United States retrieved from Plant Disease Management Reports published between 2009 and 2018. Three response variables were examined in each analysis: disease severity, marketable yield, and total yield, from which percent disease control and percent yield return compared with nontreated controls was calculated. Moderator variables used in the three-level meta-analysis or three-level meta-regression included year, disease pressure, number of fungicide applications, and slicing or pickling cucumbers. In the network meta-analysis, fungicides were grouped by common combinations of Fungicide Resistance Action Committee Codes and modes of action. Overall, fungicides significantly (P < 0.001) reduced disease severity and increased marketable and total yields, resulting in a mean 54.0% disease control and 61.9% marketable and 73.3% total yield return. Subgroup differences were observed for several fungicide applications, control plot disease severity, and cucumber type for marketable yield. Based on the meta-regression analysis for disease severity by year, fungicide efficacy has been decreasing from 2009 to 2018, potentially indicating broad development of fungicide resistance over time. Treatments containing quinone inside inhibitors, pyridinylmethyl-benzamides, and protectants and treatments containing oxysterol binding protein inhibitors and protectants most effectively reduced disease severity. The most effective fungicide combinations for disease control did not always result in the highest yield return.


Subject(s)
Cucumis sativus , Fungicides, Industrial , Oomycetes , Peronospora , Fungicides, Industrial/pharmacology , Plant Diseases/prevention & control
4.
Theor Appl Genet ; 134(8): 2577-2586, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33950283

ABSTRACT

KEY MESSAGE: This is the first identification of QTLs underlying resistance to Pseudoperonospora cubensis in Cucumis melo using a genetically characterized isolate. Pseudoperonospora cubensis, causal organism of cucurbit downy mildew (CDM), is one of the largest threats to cucurbit production in the eastern USA. Currently, no Cucumis melo (melon) cultivars have significant levels of resistance. Additionally, little is understood about the genetic basis of resistance in C. melo. Recombinant inbred lines (RILs; N = 169) generated from a cross between the resistant melon breeding line MR-1 and susceptible cultivar Ananas Yok'neam were phenotyped for CDM resistance in both greenhouse and growth chamber studies. A high-density genetic linkage map with 5,663 binned SNPs created from the RIL population was utilized for QTL mapping. Nine QTLs, including two major QTLs, were associated with CDM resistance. Of the major QTLs, qPcub-10.1 was stable across growth chamber and greenhouse tests, whereas qPcub-8.2 was detected only in growth chamber tests. qPcub-10.1 co-located with an MLO-like protein coding gene, which has been shown to confer resistance to powdery mildew and Phytophthora in other plants. This is the first screening of C. melo germplasm with a genetically characterized P. cubensis isolate.


Subject(s)
Ascomycota/physiology , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Cucumis melo/genetics , Disease Resistance/immunology , Plant Diseases/immunology , Quantitative Trait Loci , Cucumis melo/growth & development , Cucumis melo/microbiology , Disease Resistance/genetics , Genetic Linkage , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Reproduction
5.
Plant Dis ; 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33616432

ABSTRACT

In January 2020, charcoal gray, dull lesions were observed on leaves of organic kale (Brassica oleracea var. acephala) cv. Darkibor in two fields in Lexington County, South Carolina, the county with the most acres of leafy brassicas in the state. Leaf spots, also visible on the leaf underside, covered <5% of the leaf area. No spores were present. Portions of leaf spots from eight leaves, four per field, were cultured on one-quarter-strength potato dextrose agar (PDA/4). Eleven isolates of Alternaria spp. were recovered. Isolates ALT12 and UL3 were cultured in A. solani medium and DNA was extracted (Maiero et al. 1991). The internal transcribed spacer (ITS) region, translation elongation factor 1-alpha (tef1), RNA polymerase second largest subunit (rpb2), and Alternaria major allergen (Alt a 1) genes were amplified with the primer pairs V9G/ITS4, EF1-728F/EF1-986R, RPB2-5F2/FRPB2-7cR, and Alt-for/Alt-rev, respectively, and sequenced (Woudenberg et al. 2014). Sequences for isolates ALT12 and UL3, collected from different leaves in the same field, were identical to each other and to isolate AC97 (ITS accession number: LC440597; tef1: LC482018; rpb2: LC476803; Alt a 1: LC481628) of A. japonica Yoshii (Nishikawa and Nakashima 2020). ITS, tef1, repb2, and Alta a 1 sequences for each isolate were deposited in GenBank under the accessions MW374952, MW389653, MW389655, and MW389657 for ALT12 and MW374951, MW389652, MW389654, and MW389656 for UL3, respectively. Conidia of A. japonica (20 of ALT12, 10 of UL3) produced by 7-day-old cultures on Spezieller Nährstoffarmer Agar measured 62.1 ± 11.4 x 18.8 ± 2.2 µm (standard deviation). Median numbers of transverse and longitudinal septae were 6 (4 to 8) and 2 (1 to 3), respectively. Conidia formed singly or in chains of two. Cells were constricted around the transverse septae (Nishikawa and Nakashima 2020; Woudenburg et al. 2014). Chlamydospores were present in cultures of ALT12. ALT12 was pathogenic on kale cv. Darkibor and Winterbor inoculated in a greenhouse following procedures of Al-Lami et al. (2019). Four replicate pots with two plants each were used; plants were 6, 9, and 5 weeks old in trials 1, 2, and 3, respectively. The oldest three leaves of each plant were spray inoculated with a suspension of 5 x 105 conidia/ml; noninoculated control plants were sprayed with water. All plants were kept for 48 h at 100% RH, then moved to a bench in a greenhouse held at 21/16°C day/night temperatures. The second and third oldest leaves were rated 13 days after inoculation. Small gray or black spots developed on inoculated leaves and petioles in all trials, and on one noninoculated leaf in trial one. Disease incidence on inoculated leaves (73.1%) was greater than on noninoculated leaves (0.05%) (P<0.0001). Cultivars did not differ in susceptibility (P=0.12). Portions of lesions on inoculated leaves and portions of noninoculated leaves were cultured onto PDA/4 amended with antibiotics (Keinath 2013). A. japonica was reisolated from 46 of 50 inoculated leaf blades; 22 of 28 inoculated petioles; and 1 of 8, 0 of 8, and 0 of 7 noninoculated leaves in the three trials, respectively. Growers in South Carolina consider black spot, or Alternaria leaf spot, the most important fungal disease on organic kale. The presence of a second causal agent in addition to A. brassicae may increase disease occurrence. A. japonica previously was reported on arugula in California (Tidwell et al. 2014). This is the first report of A. japonica in the eastern United States.

6.
Plant Dis ; 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33225814

ABSTRACT

Anthracnose fruit rot caused by various Colletotrichum spp. is a serious disease for pepper (Capsicum annuum) growers, resulting in extensive fruit loss (Harp et al. 2008). Samples of five pepper fruits were obtained from two commercial farms in Lexington and Pickens counties, South Carolina, in August and September 2019, respectively. All fruits had two or more soft, sunken lesions covered with salmon-colored spore masses. Pieces of diseased tissue cut from the margins of lesions were surface disinfested in 0.6% sodium hypochlorite, rinsed in sterile deionized water, blotted dry, and placed on one-quarter-strength potato dextrose agar (PDA/4) amended with 100 mg chloramphenicol, 100 mg streptomycin sulfate, and 60.5 mg mefenoxam (0.25 ml Ridomil Gold EC) per liter. Two isolates of Colletotrichum sp. per fruit were preserved on dried filter paper and stored at 10º C. One additional isolate of Colletotrichum sp. had been collected from a jalapeño pepper fruit on a farm in Charleston County, South Carolina, in 1997. Colony morphology of three isolates, one per county, on Spezieller Nährstoffarmer Agar (SNA) was pale grey with a faint orange tint. All isolates readily produced conidia on SNA with an average length of 16.4 µm (std. dev. = 1.8 µm) and a width of 2.2 µm (std. dev. = 0.2 µm). Conidia were hyaline, smooth, straight, aseptate, cylindrical to fusiform with one or both ends slightly acute or round, matching the description of C. scovillei (Damm et al. 2012). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-tubulin (TUB2) genes from three isolates were amplified and sequenced with the primer pairs GDF1/GDR1 and T1/Bt2b, respectively. Species within the C. acutatum clade can be readily distinguished with GAPDH or TUB2 (Cannon et al. 2012). The GAPDH and TUB2 sequences for all three isolates were 100% similar to each other and strain CBS 126529 (GAPDH accession number JQ948597; TUB2 accession number JQ949918) of C. scovillei (Damm et al. 2012). GAPDH and TUB2 sequences for each isolate were deposited in GenBank under the accessions MT826948-MT826950 and MT826951-MT826953, respectively. A pathogenicity test was conducted on jalapeño pepper fruits by placing a 10-ul droplet of a 5 x 105 conidial suspension of each isolate onto a wound made with a sterile toothpick. Control peppers were mock inoculated with 10 ul sterile distilled water. A humid chamber was prepared by placing moist paper towels on the bottom of a sealed crisper box. Inoculated peppers were placed on upside-down 60 ml plastic condiment cups. Three replicate boxes each containing all four treatments were prepared. The experiment was repeated once. After 7 days in the humid chamber at 26ºC, disease did not develop on control fruits, whereas soft, sunken lesions covered with salmon-colored spores developed on inoculated fruits. Lesions were measured and C. scovillei was re-isolated onto amended PDA/4 as previously described. Lesion length averaged 15.6 mm (std dev. = 4.1 mm) by 11.5 mm (std dev. = 2.0 mm). Colletotrichum sp. resembling the original isolate were recovered from all inoculated fruit, but not from non-inoculated fruit. C. scovillei has been reported in Brazil in South America and in China, Indonesia, Japan, Malaysia, South Korea, Taiwan, and Thailand in Asia (Farr and Rossman 2020). This is the first report of C. scovillei as the casual organism of anthracnose fruit rot on pepper in South Carolina and the United States.

7.
Plant Dis ; 104(11): 2832-2842, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32946348

ABSTRACT

Species of Pythium cause root and stem rot in cucurbits, but no formal surveys have been conducted in the United States to identify which species are responsible. The cucurbit hosts bottle gourd, cucumber, Hubbard squash, and watermelon were transplanted in May, July, September, and November into sentinel plots in four and five different fields in 2017 and 2018, respectively, in South Carolina. Eight of the nine fields were replanted in March 2019. Isolates (600) were collected and identified by sequencing DNA of the mitochondrial cytochrome oxidase I region. The four most common species were P. spinosum (45.6% of all isolates), P. myriotylum (20.0%), P. irregulare (15.3%), and P. aphanidermatum (12.8%). P. myriotylum and P. aphanidermatum were predominantly isolated in May, July, and September, whereas P. spinosum and P. irregulare were predominantly isolated in November and March. Isolates of P. ultimum, P. irregulare, and P. spinosum were more virulent than isolates of P. myriotylum and P. aphanidermatum at 25°C. Representative isolates were screened in vitro for sensitivity to three fungicides: mefenoxam, propamocarb, and oxathiapiprolin. All isolates were sensitive to mefenoxam and propamocarb, but these same isolates were insensitive to oxathiapiprolin, except those classified taxonomically in Pythium clade I.


Subject(s)
Cucumis sativus , Fungicides, Industrial , Pythium , Plant Diseases , Pythium/genetics , South Carolina
8.
Plant Dis ; 104(11): 3019-3025, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32822263

ABSTRACT

Pythium species cause root and stem rot in watermelon (Citrullus lanatus), but cucurbit rootstocks used to graft watermelon have not been evaluated for resistance. P. aphanidermatum and P. myriotylum were inoculated onto 15 nongrafted watermelon, citron (Citrullus amarus), bottle gourd (Lagenaria siceraria), and interspecific hybrid squash (Cucurbita maxima × C. moschata) cultivars in a growth chamber. Watermelon was more susceptible than bottle gourd and interspecific hybrid squash at 20 and 30°C. Twenty-one cultivars were inoculated in a field with an equal blend of both Pythium species. Interspecific hybrid squash was less susceptible than bottle gourd and watermelon in 2018 and 2019. Seedless watermelon cultivar Tri-X 313 was grafted to one citron, one bottle gourd, and three interspecific hybrid squash rootstocks. Plants were inoculated in the field as described. Grafting to interspecific hybrid squash rootstocks reduced disease incidence compared with nongrafted controls in 2018 and 2019. Mefenoxam and propamocarb applied at transplanting did not affect disease compared with non-fungicide-treated plots. Grafting to interspecific hybrid squash Camelforce significantly increased total and marketable fruit numbers and total weight in 2019 compared with the nongrafted control. In summary, interspecific hybrid squash was consistently resistant to Pythium, demonstrating resistance and utility in watermelon grafting.


Subject(s)
Citrullus , Cucurbita , Pythium , Fruit , Plant Roots
SELECTION OF CITATIONS
SEARCH DETAIL
...