Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Org Lett ; 26(3): 577-580, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38190695

ABSTRACT

We present the synthesis of exo- and endo-spirovinylethylene carbonates, starting from various cyclic allylic alcohols. This one-pot cascade reaction to the spirocyclic scaffold was optimized using a design of experiments approach. The introduction of spirovinylethylene carbonates broadens the scope of using these in catalytic applications and provides an easy synthetic entry into spirocyclic scaffolds of various ring sizes.

3.
Front Plant Sci ; 14: 1145389, 2023.
Article in English | MEDLINE | ID: mdl-37426970

ABSTRACT

Introduction: Roots have a central role in plant resource capture and are the interface between the plant and the soil that affect multiple ecosystem processes. Field pennycress (Thlaspi arvense L.) is a diploid annual cover crop species that has potential utility for reducing soil erosion and nutrient losses; and has rich seeds (30-35% oil) amenable to biofuel production and as a protein animal feed. The objective of this research was to (1) precisely characterize root system architecture and development, (2) understand plastic responses of pennycress roots to nitrate nutrition, (3) and determine genotypic variance available in root development and nitrate plasticity. Methods: Using a root imaging and analysis pipeline, the 4D architecture of the pennycress root system was characterized under four nitrate regimes, ranging from zero to high nitrate concentrations. These measurements were taken at four time points (days 5, 9, 13, and 17 after sowing). Results: Significant nitrate condition response and genotype interactions were identified for many root traits, with the greatest impact observed on lateral root traits. In trace nitrate conditions, a greater lateral root count, length, density, and a steeper lateral root angle was observed compared to high nitrate conditions. Additionally, genotype-by-nitrate condition interaction was observed for root width, width:depth ratio, mean lateral root length, and lateral root density. Discussion: These findings illustrate root trait variance among pennycress accessions. These traits could serve as targets for breeding programs aimed at developing improved cover crops that are responsive to nitrate, leading to enhanced productivity, resilience, and ecosystem service.

4.
Plant Physiol ; 192(2): 1338-1358, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36896653

ABSTRACT

Two major groups of specialized metabolites in maize (Zea mays), termed kauralexins and dolabralexins, serve as known or predicted diterpenoid defenses against pathogens, herbivores, and other environmental stressors. To consider the physiological roles of the recently discovered dolabralexin pathway, we examined dolabralexin structural diversity, tissue-specificity, and stress-elicited production in a defined biosynthetic pathway mutant. Metabolomics analyses support a larger number of dolabralexin pathway products than previously known. We identified dolabradienol as a previously undetected pathway metabolite and characterized its enzymatic production. Transcript and metabolite profiling showed that dolabralexin biosynthesis and accumulation predominantly occur in primary roots and show quantitative variation across genetically diverse inbred lines. Generation and analysis of CRISPR-Cas9-derived loss-of-function Kaurene Synthase-Like 4 (Zmksl4) mutants demonstrated dolabralexin production deficiency, thus supporting ZmKSL4 as the diterpene synthase responsible for the conversion of geranylgeranyl pyrophosphate precursors into dolabradiene and downstream pathway products. Zmksl4 mutants further display altered root-to-shoot ratios and root architecture in response to water deficit. Collectively, these results demonstrate dolabralexin biosynthesis via ZmKSL4 as a committed pathway node biochemically separating kauralexin and dolabralexin metabolism, and suggest an interactive role of maize dolabralexins in plant vigor during abiotic stress.


Subject(s)
Diterpenes , Zea mays , Zea mays/metabolism , Diterpenes/metabolism , Biosynthetic Pathways , Lipid Metabolism
5.
Front Plant Sci ; 14: 1260005, 2023.
Article in English | MEDLINE | ID: mdl-38288407

ABSTRACT

A central goal of biology is to understand how genetic variation produces phenotypic variation, which has been described as a genotype to phenotype (G to P) map. The plant form is continuously shaped by intrinsic developmental and extrinsic environmental inputs, and therefore plant phenomes are highly multivariate and require comprehensive approaches to fully quantify. Yet a common assumption in plant phenotyping efforts is that a few pre-selected measurements can adequately describe the relevant phenome space. Our poor understanding of the genetic basis of root system architecture is at least partially a result of this incongruence. Root systems are complex 3D structures that are most often studied as 2D representations measured with relatively simple univariate traits. In prior work, we showed that persistent homology, a topological data analysis method that does not pre-suppose the salient features of the data, could expand the phenotypic trait space and identify new G to P relations from a commonly used 2D root phenotyping platform. Here we extend the work to entire 3D root system architectures of maize seedlings from a mapping population that was designed to understand the genetic basis of maize-nitrogen relations. Using a panel of 84 univariate traits, persistent homology methods developed for 3D branching, and multivariate vectors of the collective trait space, we found that each method captures distinct information about root system variation as evidenced by the majority of non-overlapping QTL, and hence that root phenotypic trait space is not easily exhausted. The work offers a data-driven method for assessing 3D root structure and highlights the importance of non-canonical phenotypes for more accurate representations of the G to P map.

6.
Fac Rev ; 11: 20, 2022.
Article in English | MEDLINE | ID: mdl-35979143

ABSTRACT

Soil compaction, in which soil grains are pressed together leaving less pore space for air and water, is a persistent problem in mechanized agriculture. Most plant roots fail to penetrate soil if it is too dense. One might assume that they are physically unable to penetrate the compact soil. However, new research demonstrates a more complex mechanism that requires the build-up of the volatile plant hormone ethylene in the rhizosphere1. Ethylene itself can arrest growth and, in compact soil, it is present in higher concentrations near roots due to its reduced ability to diffuse. Roots that lack the ethylene response pathway grow better through compact soil, demonstrating that it is physically possible to do so. The work suggests new levers for crop improvement in increasingly degraded soils.

8.
Methods Mol Biol ; 2539: 119-132, 2022.
Article in English | MEDLINE | ID: mdl-35895201

ABSTRACT

Phenotyping specific plant traits is difficult when the samples to be measured are architecturally complex. Inflorescence and root system traits are of great biological interest, but these structures present unique phenotyping challenges due to their often complicated and three-dimensional (3D) forms. We describe how a large industrial scale X-ray tomography (XRT) instrument can be used to scan architecturally complex plant structures for the goal of rapid and accurate measurement of traits that are otherwise cumbersome or not possible to capture by other means. The combination of a large imaging cabinet that can accommodate a wide range of sample size geometries and a variable microfocus reflection X-ray source allows noninvasive X-ray imaging and 3D volume generation of diverse sample types. Specific sample fixturing (mounting) and scanning conditions are presented. These techniques can be moderate to high throughput and still provide unprecedented levels of accuracy and information content in the 3D volume data they generate.


Subject(s)
Inflorescence , Tomography, X-Ray Computed , Phenotype , Plants , X-Rays
9.
Plant Physiol ; 188(2): 831-845, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34618094

ABSTRACT

Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.


Subject(s)
Imaging, Three-Dimensional/statistics & numerical data , Microscopy, Electron, Scanning/instrumentation , Plant Cells/ultrastructure , Plants/ultrastructure , X-Rays
10.
Plant Physiol ; 188(2): 703-712, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34726737

ABSTRACT

Plant cells communicate information for the regulation of development and responses to external stresses. A key form of this communication is transcriptional regulation, accomplished via complex gene networks operating both locally and systemically. To fully understand how genes are regulated across plant tissues and organs, high resolution, multi-dimensional spatial transcriptional data must be acquired and placed within a cellular and organismal context. Spatial transcriptomics (ST) typically provides a two-dimensional spatial analysis of gene expression of tissue sections that can be stacked to render three-dimensional data. For example, X-ray and light-sheet microscopy provide sub-micron scale volumetric imaging of cellular morphology of tissues, organs, or potentially entire organisms. Linking these technologies could substantially advance transcriptomics in plant biology and other fields. Here, we review advances in ST and 3D microscopy approaches and describe how these technologies could be combined to provide high resolution, spatially organized plant tissue transcript mapping.


Subject(s)
Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Plant Physiological Phenomena/genetics , Plants/genetics , Signal Transduction/genetics , Spatial Analysis , Transcriptome , Gene Expression Regulation, Plant , Genes, Plant , Single-Cell Analysis
11.
Plant Cell Environ ; 45(3): 751-770, 2022 03.
Article in English | MEDLINE | ID: mdl-34914117

ABSTRACT

Roots are the interface between the plant and the soil and play a central role in multiple ecosystem processes. With intensification of agricultural practices, rhizosphere processes are being disrupted and are causing degradation of the physical, chemical and biotic properties of soil. However, cover crops, a group of plants that provide ecosystem services, can be utilised during fallow periods or used as an intercrop to restore soil health. The effectiveness of ecosystem services provided by cover crops varies widely as very little breeding has occurred in these species. Improvement of ecosystem service performance is rarely considered as a breeding trait due to the complexities and challenges of belowground evaluation. Advancements in root phenotyping and genetic tools are critical in accelerating ecosystem service improvement in cover crops. In this study, we provide an overview of the range of belowground ecosystem services provided by cover crop roots: (1) soil structural remediation, (2) capture of soil resources and (3) maintenance of the rhizosphere and building of organic matter content. Based on the ecosystem services described, we outline current and promising phenotyping technologies and breeding strategies in cover crops that can enhance agricultural sustainability through improvement of root traits.


Subject(s)
Crops, Agricultural , Ecosystem , Agriculture , Crops, Agricultural/metabolism , Plant Roots/metabolism , Rhizosphere , Soil/chemistry
12.
Front Plant Sci ; 13: 1041404, 2022.
Article in English | MEDLINE | ID: mdl-36589101

ABSTRACT

Current methods of root sampling typically only obtain small or incomplete sections of root systems and do not capture their true complexity. To facilitate the visualization and analysis of full-sized plant root systems in 3-dimensions, we developed customized mesocosm growth containers. While highly scalable, the design presented here uses an internal volume of 45 ft3 (1.27 m3), suitable for large crop and bioenergy grass root systems to grow largely unconstrained. Furthermore, they allow for the excavation and preservation of 3-dimensional root system architecture (RSA), and facilitate the collection of time-resolved subterranean environmental data. Sensor arrays monitoring matric potential, temperature and CO2 levels are buried in a grid formation at various depths to assess environmental fluxes at regular intervals. Methods of 3D data visualization of fluxes were developed to allow for comparison with root system architectural traits. Following harvest, the recovered root system can be digitally reconstructed in 3D through photogrammetry, which is an inexpensive method requiring only an appropriate studio space and a digital camera. We developed a pipeline to extract features from the 3D point clouds, or from derived skeletons that include point cloud voxel number as a proxy for biomass, total root system length, volume, depth, convex hull volume and solidity as a function of depth. Ground-truthing these features with biomass measurements from manually dissected root systems showed a high correlation. We evaluated switchgrass, maize, and sorghum root systems to highlight the capability for species wide comparisons. We focused on two switchgrass ecotypes, upland (VS16) and lowland (WBC3), in identical environments to demonstrate widely different root system architectures that may be indicative of core differences in their rhizoeconomic foraging strategies. Finally, we imposed a strong physiological water stress and manipulated the growth medium to demonstrate whole root system plasticity in response to environmental stimuli. Hence, these new "3D Root Mesocosms" and accompanying computational analysis provides a new paradigm for study of mature crop systems and the environmental fluxes that shape them.

13.
Plant Methods ; 17(1): 127, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903248

ABSTRACT

BACKGROUND: 3D imaging, such as X-ray CT and MRI, has been widely deployed to study plant root structures. Many computational tools exist to extract coarse-grained features from 3D root images, such as total volume, root number and total root length. However, methods that can accurately and efficiently compute fine-grained root traits, such as root number and geometry at each hierarchy level, are still lacking. These traits would allow biologists to gain deeper insights into the root system architecture. RESULTS: We present TopoRoot, a high-throughput computational method that computes fine-grained architectural traits from 3D images of maize root crowns or root systems. These traits include the number, length, thickness, angle, tortuosity, and number of children for the roots at each level of the hierarchy. TopoRoot combines state-of-the-art algorithms in computer graphics, such as topological simplification and geometric skeletonization, with customized heuristics for robustly obtaining the branching structure and hierarchical information. TopoRoot is validated on both CT scans of excavated field-grown root crowns and simulated images of root systems, and in both cases, it was shown to improve the accuracy of traits over existing methods. TopoRoot runs within a few minutes on a desktop workstation for images at the resolution range of 400^3, with minimal need for human intervention in the form of setting three intensity thresholds per image. CONCLUSIONS: TopoRoot improves the state-of-the-art methods in obtaining more accurate and comprehensive fine-grained traits of maize roots from 3D imaging. The automation and efficiency make TopoRoot suitable for batch processing on large numbers of root images. Our method is thus useful for phenomic studies aimed at finding the genetic basis behind root system architecture and the subsequent development of more productive crops.

14.
Plant Methods ; 17(1): 125, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34876178

ABSTRACT

BACKGROUND: The root system architecture (RSA) of alfalfa (Medicago sativa L.) affects biomass production by influencing water and nutrient uptake, including nitrogen fixation. Further, roots are important for storing carbohydrates that are needed for regrowth in spring and after each harvest. Previous selection for a greater number of branched and fibrous roots significantly increased alfalfa biomass yield. However, phenotyping root systems of mature alfalfa plant is labor-intensive, time-consuming, and subject to environmental variability and human error. High-throughput and detailed phenotyping methods are needed to accelerate the development of alfalfa germplasm with distinct RSAs adapted to specific environmental conditions and for enhancing productivity in elite germplasm. In this study methods were developed for phenotyping 14-day-old alfalfa seedlings to identify measurable root traits that are highly heritable and can differentiate plants with either a branched or a tap rooted phenotype. Plants were grown in a soil-free mixture under controlled conditions, then the root systems were imaged with a flatbed scanner and measured using WinRhizo software. RESULTS: The branched root plants had a significantly greater number of tertiary roots and significantly longer tertiary roots relative to the tap rooted plants. Additionally, the branch rooted population had significantly more secondary roots > 2.5 cm relative to the tap rooted population. These two parameters distinguishing phenotypes were confirmed using two machine learning algorithms, Random Forest and Gradient Boosting Machines. Plants selected as seedlings for the branch rooted or tap rooted phenotypes were used in crossing blocks that resulted in a genetic gain of 10%, consistent with the previous selection strategy that utilized manual root scoring to phenotype 22-week-old-plants. Heritability analysis of various root architecture parameters from selected seedlings showed tertiary root length and number are highly heritable with values of 0.74 and 0.79, respectively. CONCLUSIONS: The results show that seedling root phenotyping is a reliable tool that can be used for alfalfa germplasm selection and breeding. Phenotypic selection of RSA in seedlings reduced time for selection by 20 weeks, significantly accelerating the breeding cycle.

15.
Emerg Top Life Sci ; 5(2): 177-178, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34027975

ABSTRACT

In recent years, an array of new technologies is propelling plant science in exciting directions and facilitating the integration of data across multiple scales. These tools come at a critical time. With an expanding global population and the need to provide food in sustainable ways, we as a civilization will be asking more of plants and plant biologists than ever before. This special issue on emerging technologies in plant science brings together a set of reviews that spotlight a range of approaches that are changing how we ask questions and allow scientific inquiry from macromolecular to ecosystem scales.


Subject(s)
Ecosystem , Plants , Food
16.
J Org Chem ; 86(5): 3907-3922, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33617252

ABSTRACT

Herein, we report the oligopeptide-catalyzed site-selective acylation of partially protected monosaccharides. We identified catalysts that invert site-selectivity compared to N-methylimidazole, which was used to determine the intrinsic reactivity, for 4,6-O-protected glucopyranosides (trans-diols) as well as 4,6-O-protected mannopyranosides (cis-diols). The reaction yields up to 81% of the inherently unfavored 2-O-acetylated products with selectivities up to 15:1 using mild reaction conditions. We also determined the influence of protecting groups on the reaction and demonstrate that our protocol is suitable for one-pot reactions with multiple consecutive protection steps.


Subject(s)
Mannose , Monosaccharides , Acylation , Catalysis , Oligopeptides
17.
Emerg Top Life Sci ; 5(2): 249-260, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33555320

ABSTRACT

A plants' water and nutrients are primarily absorbed through roots, which in a natural setting is highly dependent on the 3-dimensional configuration of the root system, collectively known as root system architecture (RSA). RSA is difficult to study due to a variety of factors, accordingly, an arsenal of methods have been developed to address the challenges of both growing root systems for imaging, and the imaging methods themselves, although there is no 'best' method as each has its own spectrum of trade-offs. Here, we describe several methods for plant growth or imaging. Then, we introduce the adaptation and integration of three complementary methods, root mesocosms, photogrammetry, and electrical resistance tomography (ERT). Mesocosms can allow for unconstrained root growth, excavation and preservation of 3-dimensional RSA, and modularity that facilitates the use of a variety of sensors. The recovered root system can be digitally reconstructed through photogrammetry, which is an inexpensive method requiring only an appropriate studio space and a digital camera. Lastly, we demonstrate how 3-dimensional water availability can be measured using ERT inside of root mesocosms.


Subject(s)
Photogrammetry , Plant Roots , Plant Development , Plants
18.
Plant Phenomics ; 2020: 2073723, 2020.
Article in English | MEDLINE | ID: mdl-33313546

ABSTRACT

Numerous types of biological branching networks, with varying shapes and sizes, are used to acquire and distribute resources. Here, we show that plant root and shoot architectures share a fundamental design property. We studied the spatial density function of plant architectures, which specifies the probability of finding a branch at each location in the 3-dimensional volume occupied by the plant. We analyzed 1645 root architectures from four species and discovered that the spatial density functions of all architectures are population-similar. This means that despite their apparent visual diversity, all of the roots studied share the same basic shape, aside from stretching and compression along orthogonal directions. Moreover, the spatial density of all architectures can be described as variations on a single underlying function: a Gaussian density truncated at a boundary of roughly three standard deviations. Thus, the root density of any architecture requires only four parameters to specify: the total mass of the architecture and the standard deviations of the Gaussian in the three (x, y, z) growth directions. Plant shoot architectures also follow this design form, suggesting that two basic plant transport systems may use similar growth strategies.

19.
New Phytol ; 226(6): 1873-1885, 2020 06.
Article in English | MEDLINE | ID: mdl-32162345

ABSTRACT

●Inflorescence architecture in plants is often complex and challenging to quantify, particularly for inflorescences of cereal grasses. Methods for capturing inflorescence architecture and for analyzing the resulting data are limited to a few easily captured parameters that may miss the rich underlying diversity. ●Here, we apply X-ray computed tomography combined with detailed morphometrics, offering new imaging and computational tools to analyze three-dimensional inflorescence architecture. To show the power of this approach, we focus on the panicles of Sorghum bicolor, which vary extensively in numbers, lengths, and angles of primary branches, as well as the three-dimensional shape, size, and distribution of the seed. ●We imaged and comprehensively evaluated the panicle morphology of 55 sorghum accessions that represent the five botanical races in the most common classification system of the species, defined by genetic data. We used our data to determine the reliability of the morphological characters for assigning specimens to race and found that seed features were particularly informative. ●However, the extensive overlap between botanical races in multivariate trait space indicates that the phenotypic range of each group extends well beyond its overall genetic background, indicating unexpectedly weak correlation between morphology, genetic identity, and domestication history.


Subject(s)
Inflorescence , Sorghum , Edible Grain , Inflorescence/genetics , Phenotype , Reproducibility of Results , Sorghum/genetics
20.
J Org Chem ; 85(4): 1835-1846, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31763833

ABSTRACT

We present a novel concept for the in situ control of site-selectivity of catalytic acetylations of partially protected sugars using light as external stimulus and oligopeptide catalysts equipped with an azobenzene moiety. The isomerizable azobenzene-peptide backbone defines the size and shape of the catalytic pocket, while the π-methyl-l-histidine (Pmh) moiety transfers the electrophile. Photoisomerization of the E- to the Z-azobenzene catalyst (monitored via NMR) with an LED (λ = 365 nm) drastically changes the chemical environment around the catalytically active Pmh moiety, so that the light-induced change in the catalyst shape alters site-selectivity. As a proof of principle, we employed (4,6-O-benzylidene)methyl-α-d-pyranosides, which provide a change in regioselectivity from 2:1 (E) to 1:5 (Z) for the monoacetylated products at room temperature. The validity of this new catalyst-design concept is further demonstrated with the regioselective acetylation of the natural product quercetin. In situ irradiation NMR spectroscopy was used to quantify photostationary states under continuous irradiation with UV light.

SELECTION OF CITATIONS
SEARCH DETAIL
...