Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 62017 04 13.
Article in English | MEDLINE | ID: mdl-28406397

ABSTRACT

Animals are characterized by a set of highly conserved developmental regulators. Changes in the cis-regulatory elements of these regulators are thought to constitute the major driver of morphological evolution. However, the role of coding sequence evolution remains unresolved. To address this question, we used the Atonal family of proneural transcription factors as a model. Drosophila atonal coding sequence was endogenously replaced with that of atonal homologues (ATHs) at key phylogenetic positions, non-ATH proneural genes, and the closest homologue to ancestral proneural genes. ATHs and the ancestral-like coding sequences rescued sensory organ fate in atonal mutants, in contrast to non-ATHs. Surprisingly, different ATH factors displayed different levels of proneural activity as reflected by the number and functionality of sense organs. This proneural potency gradient correlated directly with ATH protein stability, including in response to Notch signaling, independently of mRNA levels or codon usage. This establishes a distinct and ancient function for ATHs and demonstrates that coding sequence evolution can underlie quantitative variation in sensory development and function.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Drosophila Proteins/genetics , Drosophila/embryology , Nerve Tissue Proteins/genetics , Transcription, Genetic , Animal Structures/embryology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Morphogenesis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Nerve Tissue Proteins/metabolism , Recombination, Genetic
2.
Science ; 343(6170): 525-8, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24482478

ABSTRACT

Circadian clocks attune the physiology of virtually all living organisms to the diurnal cycles of their environments. In metazoan animals, multiple sensory input pathways have been linked to clock synchronization with the environmental cycle (entrainment). Extrinsic entrainment cues include light and temperature. We show that (12-hour:12-hour) cycles of vibration and silence (VS) are sufficient to synchronize the daily locomotor activity of wild-type Drosophila melanogaster. Behavioral synchronization to VS cycles required a functional clock and functional chordotonal organs and was accompanied by phase-shifts of the daily oscillations of PERIOD protein concentrations in brain clock neurons. The feedback from mechanosensory-and particularly, proprioceptive-organs may help an animal to keep its circadian clock in sync with its own, stimulus-induced activities.


Subject(s)
Behavior, Animal/physiology , Circadian Clocks , Drosophila melanogaster/physiology , Mechanotransduction, Cellular , Motor Activity/physiology , Proprioception , Acoustic Stimulation , Animals , Brain/cytology , Brain/metabolism , Cues , Drosophila Proteins/metabolism , Neurons/metabolism , Period Circadian Proteins/metabolism , Sound , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...