Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Water Sci Technol ; 77(7-8): 1899-1908, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29676747

ABSTRACT

In this study, an integrated aerobic membrane bioreactor (MBR)-nanofiltration (NF) system has been applied for advanced treatment of Opium processing wastewaters to comply with strict discharge limits. Aerobic MBR treatment was successfully applied to high strength industrial wastewater. In aerobic MBR treatment, a non-fouling unique slot aeration system was designed using computational fluid dynamics techniques. The MBR was used to separate treated effluent from dispersed and non-settleable biomass. Respirometric modeling using MBR sludge indicated that the biomass exhibited similar kinetic parameters to that of municipal activated sludge systems. Aerobic MBR/NF treatment reduced chemical oxygen demand (COD) from 32,000 down to 2,500 and 130 mg/L, respectively. The MBR system provided complete removal of total inorganic nitrogen; however, nearly 50 mgN/L organic nitrogen remained in the permeate. Post NF treatment after MBR permeate reduced nitrogen below 20 mgN/L, providing nearly total color removal. In addition, a 90% removal in the conductivity parameter was reached with an integrated MBR/NF system. Finally, post NF application to MBR permeate was found not to be practical at higher pH due to low flux (3-4 L/m2/hour) with low recovery rates (30-40%). As the permeate pH lowered to 5.5, 75% of NF recovery was achieved at a flux of 15 L/m2/hour.


Subject(s)
Alkaloids/chemistry , Bioreactors , Filtration/instrumentation , Industrial Waste/analysis , Waste Disposal, Fluid/methods , Aerobiosis , Biological Oxygen Demand Analysis , Membranes, Artificial , Nitrogen/analysis , Opium/chemistry , Waste Disposal, Fluid/instrumentation , Wastewater/analysis
2.
Environ Monit Assess ; 187(3): 99, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25663407

ABSTRACT

This study aimed at investigating the impact of industrialization on the quality of agricultural soils in the district of Bandirma, Turkey, in terms of soil heavy metal contamination. Many soil and phosphogypsum samples were analyzed, and enrichment factors (EFs) were calculated. The average concentration gradient of metals in the soil (mg/kg) was As < Se < Sb < Pb < Co < Cd < V < Cu < Ni < Zn < Cr < P < Mn < Na < K < Mg < Fe < Ca < Al. According to the Pearson cross-correlation results for the element pairs of Fe-Mg (0.635), Fe-Cu (0.863), Fe-Cd (0.545), Cu-Cd (0.630), Mn-Cr (0.698), Mn-Al (0.523), Cr-Mg (0.543), Al-P (0.508), Na-K (0.616), and C-Zn (0.703), the metal enrichments in the soil were found to be moderately high and significant. In the majority of soil samples, Ni, Cu, Co, Zn, Se, Pb, and Cr were moderately enriched whereas Sb and Cd were extremely highly enriched. A factor analysis (FA) was applied to the cross-correlations of the elements to identify their sources. Six significant factors were extracted with the help of FA, explaining 77.22 % of the total variance, and the elements loaded on these factors were interpreted. The evaluations of the factors showed that the study area has been exposed to heavy metal pollution from anthropogenic sources considering the high levels of Cr, Cd, Cu, P, V, Zn, Ni, Sb, and Pb in the soil and the higher EFs falling in the range of 2.54-372.87. Moreover, the soil concentrations of Mn, Mg, Co, Al, K, and Ca were also high, but they were of lithogenic in origin according to the FA.


Subject(s)
Agriculture , Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Turkey
3.
Waste Manag Res ; 32(8): 763-71, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25069454

ABSTRACT

Hazardous waste (HW) generation information is an absolute necessity for ensuring the proper planning, implementation, and monitoring of any waste management system. Unfortunately, environmental agencies in developing countries face difficulties in gathering data directly from the creators of such wastes. It is possible, however, to construct theoretical HW inventories using the waste generation factors (WGFs). The objective of this study was to develop a complete nationwide HW inventory of Turkey that relies on nation-specific WGFs to support management activities of the Turkish Ministry of Environment and Urbanization (MoEU). Inventory studies relied on WGFs from: (a) the literature and (b) field studies and analysis of waste declarations reflecting country-specific industrial practices. Moreover, new tools were introduced to the monitoring infrastructure of MoEU to obtain a comprehensive waste generation data set. Through field studies and a consideration of country specific conditions, it was possible to more thoroughly elucidate HW generation trends in Turkey, a method that was deemed superior to other alternatives. Declaration and literature based WGFs also proved most helpful in supplementing field observations that could not always be conducted. It was determined that these theoretical inventories could become valuable assets in supporting regulating agencies in developing countries for a more thorough implementation of HW management systems.


Subject(s)
Developing Countries , Hazardous Waste/analysis , Models, Theoretical , Waste Management/methods , Turkey
4.
ScientificWorldJournal ; 2013: 890854, 2013.
Article in English | MEDLINE | ID: mdl-24363624

ABSTRACT

In this study, the changes in UV absorbance of water samples were characterized using defined differential UV spectroscopy (DUV), a novel spectroscopic technique. Chlorination experiments were conducted with water samples from Terkos Lake (TL) and Büyükçekmece Lake (BL) (Istanbul, Turkey). The maximum loss of UV absorbance for chlorinated TL and BL raw water samples was observed at a wavelength of 272 nm. Interestingly, differential absorbance at 272 nm (ΔUV272) was shown to be a good indicator of UV absorbing chromophores and the formation of trihalomethanes (THMs) resulting from chlorination. Furthermore, differential spectra of chlorinated TL waters were similar for given chlorination conditions, peaking at 272 nm. The correlations between THMs and ΔUV272 were quantified by linear equations with R² values >0.96. The concentration of THMs formed when natural organic matter is chlorinated increases with increasing time and pH levels. Among all THMs, CHCl3 was the dominant species forming as a result of the chlorination of TL and BL raw water samples. The highest chloroform (CHCl3), dichlorobromomethane (CHCl2Br), and dibromochloromethane (CHBr2Cl) concentration were released per unit loss of absorbance at 272 nm at pH 9 with a maximum reaction time of 168 hours and Cl2/dissolved organic carbon ratio of 3.2.


Subject(s)
Chlorine/chemistry , Spectrophotometry, Ultraviolet/methods , Trihalomethanes/analysis , Water/chemistry , Chromatography, Gas , Limit of Detection , Liquid-Liquid Extraction
5.
Sci Total Environ ; 390(2-3): 417-24, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-17997473

ABSTRACT

A sampling program has been undertaken to investigate the variations of disinfection by-products (DBPs) formation and nature and fate of natural organic matter (NOM) through water treatment plants in Istanbul. Specific focus has been given to the effect seasonal changes on the formation of DBPs and organic precursors levels. Water samples were collected from the three reservoirs inlet and within three major water treatment plants of Istanbul, Turkey. Changes in the dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV(254)), specific ultraviolet absorbance (SUVA), trihalomethane formation potential (THMFP), and haloacetic acids formation potential (HAAFP) were measured for both the treated and raw water samples. The variations of THM and HAA concentrations within treatment processes were monitored and also successfully assessed. The reactivity of the organic matter changed throughout the year with the lowest reactivity (THMFP and HAAFP) in winter, increasing in spring and reaching a maximum in fall season. This corresponded to the water being easier to treat in fall and an increase in the proportion of hydrophobic content. Understanding the seasonal changes in organic matter character and their reactivity with treatment chemicals should lead to a better optimization of the treatment processes and a more consistent water quality.


Subject(s)
Acetates/chemistry , Trihalomethanes/chemistry , Water Purification/methods , Water Supply/standards , Acetates/analysis , Carbon/chemistry , Chromatography, Gas , Fresh Water , Organic Chemicals/chemistry , Seasons , Trihalomethanes/analysis , Turkey , Water Supply/analysis
6.
J Hazard Mater ; 152(2): 789-94, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-17768007

ABSTRACT

Chlorine reacts with the natural organic matter (NOM) in waters and forms disinfection by-products (DBP). Major of these by-products are trihalomethanes (THM) and haloacetic acids (HAA). They have been known to cause cancer and other toxic effects to human beings. This study determined the removal efficiencies of THM by nanofiltration (NF) techniques with NF200 and DS5 membrane. The rejection of this chlorination by-products was studied at various feed concentration by changing transmembrane pressure. Experimental results indicated that in general increasing operating pressure produces a higher flux but does not have a significant effect on THM rejection. On the other hand, increasing the feed concentration produces a little change in the overall flux and rejection capacity. NF200 membrane removed more THM than DS5 membrane. The higher removal efficiency of dibromochloromethane (DBCM) was attributed to brominating characteristics (higher molecular weight (MW) and molecular size). As a consequence, the results of this study suggest that the NF membrane process is one of the best available technologies for removing THM compounds.


Subject(s)
Chloroform/isolation & purification , Membranes, Artificial , Nanostructures , Water Pollutants, Chemical/isolation & purification , Water Supply , Filtration/instrumentation
7.
J Hazard Mater ; 149(2): 445-51, 2007 Oct 22.
Article in English | MEDLINE | ID: mdl-17517472

ABSTRACT

Recent epidemiological studies reported that brominated DBPs may be more carcinogenic than their chlorinated analogs. Thus, this research was designed to investigate the role of bromide ion in the formation and speciation of disinfection by-products (DBPs) during chlorination of Buyukcekmece Lake Water (BLW) in Istanbul. Chlorination of BLW samples was carried out at pH 7.0 with 5 and 12 mg/l chlorine dosages. For each chlorine dosage, six bromide concentrations ranging from 0.05 to 4.0mg/l were added to form a 2 x 6 experimental matrix. In general, increasing bromide concentration gradually shifted trihalomethanes (THMs) and haloacetic acids (HAAs) speciation from chlorinated species to the mixed bromochloro species during chlorination. The halogen substitution ability of HOBr and HOCl during the formation of THMs and HAAs can be estimated through the use of probability theory. It was concluded that, in both halogen substitution for THM and dihalogenated HAA formation, HOBr was found to be 20 times more reactive than HOCl.


Subject(s)
Bromides/chemistry , Disinfection , Water Supply , Acetates/chemistry , Halogenation , Ions/chemistry , Models, Chemical , Trihalomethanes/chemistry , Turkey
8.
Sci Total Environ ; 378(3): 269-80, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17412398

ABSTRACT

Oxidation of raw water with chlorine results in formation of trihalomethanes (THM) and haloacetic acids (HAA). Factors affecting their concentrations have been found to be organic matter type and concentration, pH, temperature, chlorine dose, contact time and bromide concentration, but the mechanisms of their formation are still under investigation. Within this scope, chlorination experiments have been conducted with water reservoirs from Terkos, Buyukcekmece and Omerli lakes, Istanbul, with different water quality regarding bromide concentration and organic matter content. The factors studied were pH, contact time, chlorine dose, and specific ultraviolet absorbance (SUVA). The determination of disinfection by-products (DBP) was carried out by gas chromatography techniques. Statistical analysis of the results was focused on the development of multiple regression models for predicting the concentrations of total THM and total HAA based on the use of pH, contact time, chlorine dose, and SUVA. The developed models provided satisfactory estimations of the concentrations of the DBP and the model regression coefficients of THM and HAA are 0.88 and 0.61, respectively. Further, the Durbin-Watson values confirm the reliability of the two models. The results indicate that under these experimental conditions which indicate the variations of pH, chlorine dosages, contact time, and SUVA values, the formation of THM and HAA in water can be described by the multiple linear regression technique.


Subject(s)
Disinfection , Environmental Monitoring , Hydrocarbons, Halogenated/analysis , Water Pollutants, Chemical/analysis , Water Supply/standards , Acetates/analysis , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Linear Models , Trihalomethanes/analysis , Turkey , Urbanization
9.
J Hazard Mater ; 141(1): 320-8, 2007 Mar 06.
Article in English | MEDLINE | ID: mdl-16905244

ABSTRACT

Coagulation process can be used to control natural organic matter (NOM) during drinking water production. The effectiveness of the coagulation process appeared to depend on the pH of coagulation rather than coagulant dosages. Jar tests conducted with depressed pH levels at different coagulation conditions removed more dissolved organic carbon (DOC) than those at moderate pH levels. For low DOC waters, like Omerli Lake Water (OLW), additional treatment would be necessary to achieve enhanced removal of NOM. In this study, three different coagulation techniques were used to remove disinfection by-products (DBP) precursors from three Istanbul surface water supplies. Jar test results indicate that optimize coagulation (OC) can enhance the removal of DBP precursors, and the removal of DOC could be improved from the current average of 15% to an average of 56% at the three sites tested. At lower pH, ferric coagulants generally performed better for removal of DBP precursors than did alum.


Subject(s)
Alum Compounds/chemistry , Disinfectants/adverse effects , Ferric Compounds/chemistry , Organic Chemicals/analysis , Water Purification/methods , Chlorides , Hydrogen-Ion Concentration , Turkey
10.
Environ Monit Assess ; 121(1-3): 503-17, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16770505

ABSTRACT

Because of increasing need to balance health risks for pathogen control and disinfection by-products (DBP) formation in drinking water supplies, water utilities are forced to closely examine and optimize their disinfection practices. This research was designed to investigate the effects of independent variables of dissolved organic carbon (DOC), ferric chloride dosage, chlorine dose, and reaction time on trihalomethanes (THMs) formation in Terkos Lake Water (TLW) of Istanbul City. A statistically-based empirical model was developed for predicting THM formation during enhanced coagulation. The R (2) and F value of model were 0.762 and 460, respectively. The model was found to be statistically significant for all four variables, and model predictions appear to be most accurate for this study. A multiple linear model exhibited the best fit of data. It was observed that THM formation depended primarily on DOC removal. Model calibration, testing and validation were accomplished by using independent data set.


Subject(s)
Chlorine/chemistry , Models, Chemical , Trihalomethanes/chemical synthesis , Water Pollutants, Chemical/chemical synthesis , Water Purification/standards , Carbon/chemistry , Chlorides , Ferric Compounds/chemistry , Fresh Water/chemistry , Time Factors , Water Supply
11.
J Environ Sci Health B ; 38(6): 843-53, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14649713

ABSTRACT

Ozonation of alpha endosulfan and the effects of some parameters such as pH, temperature and partial pressure on ozonation were investigated and the kinetic constants were calculated in this study. Alpha endosulfan solutions were ozonated in a lab-scale semi-batch reactor under variable experimental conditions. Increase in dissolved ozone concentration had a positive effect on oxidation rate. Alpha endosulfan could be removed up to 94% at pH 4 for an ozonation time of 60 minutes. The oxidation reaction was found to be of second order and of first order with respect to both ozone and alpha endosulfan. The temperature dependent reaction expression of alpha endosulfan was obtained as kd = (1.889 exp(- 2.21 x 10(-3)/T). It was concluded that, although the rate of reaction was lower than the rate of other pesticide oxidation reported in the literature. alpha endosulfan presented an obvious reaction to ozonation.


Subject(s)
Endosulfan/chemistry , Hydrocarbons, Chlorinated , Insecticides/chemistry , Ozone/chemistry , Water Pollutants, Chemical , Humans , Hydrogen-Ion Concentration , Solutions , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...