Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
AJPM Focus ; 3(3): 100203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883693

ABSTRACT

Introduction: In the U.S., xylazine, the veterinary non-opioid sedative, has emerged as a major threat to people who use illicitly manufactured fentanyl and other drugs. The aim of this study was to compare wastewater detection of xylazine with other public health and safety surveillance data from 2019 to 2023 in Kentucky. Methods: Wastewater samples from 5 rest areas, 2 truck weigh stations, and 4 wastewater treatment plants were tested for xylazine. Wastewater xylazine positivity rates were compared with xylazine-positive submission rates from the National Forensic Laboratory Information System and Kentucky's fatal overdoses in 6-month periods (Period 1=January-June; Period 2=July-December). Results: Xylazine was detected in 61.6% (424 of 688) of daily wastewater samples from roadway sites/wastewater treatment plants. For roadways, detection increased from 55% (Period 1, 2021) to 94% (Period 1, 2023), and wastewater treatment plants had an overall detection of 25.8% (n=66 samples, Periods 1 and 2, 2022). Increasing roadway positivity corresponded to trends in National Forensic Laboratory Information System xylazine-positive submission rates: from 0.19 per 1,000 submissions (Period 1, 2019) to 2.9 per 1,000 (Period 2, 2022, latest available). No deaths from xylazine were reported publicly in Kentucky, although this study's authors identified 1-4 deaths (true count suppressed) in the overdose surveillance system, which, in back-of-the-envelope comparisons with other states, is far fewer than expected. Conclusions: Wastewater signals indicate broad geographic exposure to xylazine in Kentucky, yet health outcomes data suggest otherwise. These findings may inform regional, national, and international efforts to incorporate wastewater-based drug surveillance. Harm-reduction activities along roadways and other suitable locations may be needed.

2.
Emerg Infect Dis ; 30(3): 530-538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407144

ABSTRACT

Persons living in long-term care facilities (LTCFs) were disproportionately affected by COVID-19. We used wastewater surveillance to detect SARS-CoV-2 infection in this setting by collecting and testing 24-hour composite wastewater samples 2-4 times weekly at 6 LTCFs in Kentucky, USA, during March 2021-February 2022. The LTCFs routinely tested staff and symptomatic and exposed residents for SARS-CoV-2 using rapid antigen tests. Of 780 wastewater samples analyzed, 22% (n = 173) had detectable SARS-CoV-2 RNA. The LTCFs reported 161 positive (of 16,905) SARS-CoV-2 clinical tests. The wastewater SARS-CoV-2 signal showed variable correlation with clinical test data; we observed the strongest correlations in the LTCFs with the most positive clinical tests (n = 45 and n = 58). Wastewater surveillance was 48% sensitive and 80% specific in identifying SARS-CoV-2 infections found on clinical testing, which was limited by frequency, coverage, and rapid antigen test performance.


Subject(s)
COVID-19 , Wastewater , Humans , Kentucky/epidemiology , Wastewater-Based Epidemiological Monitoring , Long-Term Care , RNA, Viral , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2
3.
Sci Total Environ ; 912: 168782, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000737

ABSTRACT

Wastewater-based epidemiology (WBE) measures pathogens in wastewater to monitor infectious disease prevalence in communities. Due to the high dilution of pathogens in sewage, a concentration method is often required to achieve reliable biomarker signals. However, most of the current concentration methods rely on expensive equipment and labor-intensive processes, which limits the application of WBE in low-resource settings. Here, we compared the performance of four inexpensive and simple concentration methods to detect SARS-CoV-2 in wastewater samples: Solid Fraction, Porcine Gastric Mucin-conjugated Magnetic Beads, Calcium Flocculation-Citrate Dissolution (CFCD), and Nanotrap® Magnetic Beads (NMBs). The NMBs and CFCD methods yielded the highest concentration performance for SARS-CoV-2 (∼16-fold concentration and âˆ¼ 41 % recovery) and require <45 min processing time. CFCD has a relatively low consumable cost (<$2 per four sample replicates). All methods can be performed with basic laboratory equipment and minimal electricity usage which enables further application of WBE in remote areas and low resource settings.


Subject(s)
COVID-19 , Resource-Limited Settings , Animals , Swine , Wastewater-Based Epidemiological Monitoring , COVID-19/epidemiology , SARS-CoV-2 , Wastewater , Calcium Citrate
4.
J Environ Chem Eng ; 11(2): 109595, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36875746

ABSTRACT

Wastewater-based epidemiology (WBE) has enabled us to describe Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections in populations. However, implementation of wastewater monitoring of SARS-CoV-2 is limited due to the need for expert staff, expensive equipment, and prolonged processing times. As WBE increases in scope (beyond SARS-CoV-2) and scale (beyond developed regions), there is a need to make WBE processes simpler, cheaper, and faster. We developed an automated workflow based on a simplified method termed exclusion-based sample preparation (ESP). Our automated workflow takes 40 min from raw wastewater to purified RNA, which is several times faster than conventional WBE methods. The total assay cost per sample/replicate is $6.50 which includes consumables and reagents for concentration, extraction, and RT-qPCR quantification. The assay complexity is reduced significantly, as extraction and concentration steps are integrated and automated. The high recovery efficiency of the automated assay (84.5 ± 25.4%) yielded an improved Limit of Detection (LoDAutomated=40 copies/mL) compared to the manual process (LoDManual=206 copies/mL), increasing analytical sensitivity. We validated the performance of the automated workflow by comparing it with the manual method using wastewater samples from several locations. The results from the two methods correlated strongly (r = 0.953), while the automated method was shown to be more precise. In 83% of the samples, the automated method showed lower variation between replicates, which is likely due to higher technical errors in the manual process e.g., pipetting. Our automated wastewater workflow can support the expansion of WBE in the fight against Coronavirus Disease of 2019 (COVID-19) and other epidemics.

5.
Sci Total Environ ; 878: 162992, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-36948314

ABSTRACT

Wastewater-based Epidemiology (WBE) has contributed to surveillance of SARS-CoV-2 in communities across the world. Both symptomatic and asymptomatic patients with COVID-19 can shed the virus through the gastrointestinal tract, enabling the quantification of the virus in stool and ultimately in wastewater (WW). Unfortunately, instability of SARS-CoV-2 RNA in wastewater limits the utility of WBE programs, particularly in remote/rural regions where reliable cold storage and/or rapid shipping may be unavailable. This study examined whether rapid SARS-CoV-2 RNA extraction on the day of sample collection could minimize degradation. Importantly, the extraction technology used in these experiments, termed exclusion-based sample preparation (ESP), is lightweight, portable, and electricity-free, making it suitable for implementation in remote settings. We demonstrated that immediate RNA extraction followed by ambient storage significantly increased the RNA half-life compared to raw wastewater samples stored at both 4 °C or ambient temperature. Given that RNA degradation negatively impacts both the sensitivity and precision of WBE measurements, efforts must be made to mitigate degradation in order to maximize the potential impact of WBE on public health.


Subject(s)
COVID-19 , Humans , RNA, Viral , SARS-CoV-2/genetics , Wastewater , Electricity
6.
J Colloid Interface Sci ; 615: 494-500, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35150957

ABSTRACT

HYPOTHESIS: Waxy hydrocarbons diffuse freely in polydimethylsiloxane (PDMS), and this capability can be leveraged to generate inexpensive surface micropatterns that modify adhesion and wetting. EXPERIMENTS: Patterns are created by placing a waxy Parafilm sheet on the back of a PDMS stamp containing microscale surface features. When heated, the paraffin liquefies and diffuses through the stamp, creating a thin liquid layer on the micropatterned stamp surface; when placed in contact with a target surface, the layer solidifies and is retained on the target when the stamp is removed. Micropatterns were generated on different materials and surface topographies; pattern geometry was evaluated using optical profilometry and changes in wetting were evaluated using contact angle goniometry. Diffusion of paraffin through PDMS was evaluated using XPS. FINDINGS: Wax micropatterns have submicron lateral resolution and thickness ranging from 85 to 380 nm depending on contact time. By using XPS analysis to track paraffin diffusion within the PDMS stamp during this process, we estimate the diffusion coefficient to be 5.3 × 10-7 cm2/s at 65 °C. This means that the paraffin layer at the stamp surface replenishes in less than a second after stamping, so it can be used multiple times without re-inking to deposit complex, multi-layer paraffin patterns.


Subject(s)
Surface Properties
7.
ACS ES T Water ; 2(11): 1984-1991, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-37552725

ABSTRACT

Over the course of the COVID-19 pandemic, wastewater surveillance has become a useful tool for describing SARS-CoV-2 prevalence in populations of varying size, from individual facilities (e.g., university residence halls, nursing homes, prisons) to entire municipalities. Wastewater analysis for SARS-CoV-2 RNA requires specialized equipment, expensive consumables, and expert staff, limiting its feasibility and scalability. Further, the extremely labile nature of viral RNA complicates sample transportation, especially in regions with limited access to reliable cold chains. Here, we present a new method for wastewater analysis, termed exclusion-based sample preparation (ESP), that substantially simplifies workflow (at least 70% decrease in time; 40% decrease in consumable usage compared with traditional techniques) by targeting the labor-intensive processing steps of RNA purification and concentration. To optimize and validate this method, we analyzed wastewater samples from residence halls at the University of Kentucky, of which 34% (44/129) contained detectible SARS-CoV-2 RNA. Although concurrent clinical testing was not comprehensive, student infections were identified in the 7 days following a positive wastewater detection in 68% of samples. This pilot study among university residence halls validated the performance and utility of the ESP method, laying the foundation for future studies in regions of the world where wastewater testing is not currently feasible.

8.
Langmuir ; 35(32): 10299-10308, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31291112

ABSTRACT

3D cell culture and microfluidics both represent powerful tools for replicating critical components of the cell microenvironment; however, challenges involved in the integration of the two and compatibility with standard tissue culture protocols still represent a steep barrier to widespread adoption. Here we demonstrate the use of engineered surface roughness in the form of microfluidic channels to integrate 3D cell-laden hydrogels and microfluidic fluid delivery. When a liquid hydrogel precursor solution is pipetted onto a surface containing open microfluidic channels, the solid/liquid/air interface becomes pinned at sharp edges such that the hydrogel forms the "fourth wall" of the channels upon solidification. We designed Cassie-Baxter microfluidic surfaces that leverage this phenomenon, making it possible to have barrier-free diffusion between the channels and the hydrogel; in addition, sealing is robust enough to prevent leakage between the two components during fluid flow, but the sealing can also be reversed to facilitate recovery of the cell/hydrogel material after culture. This method was used to culture MDA-MB-231 cells in collagen, which remained viable and proliferated while receiving media exclusively through the microfluidic channels over the course of several days.


Subject(s)
Cell Culture Techniques , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...