Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 38(4): 597-607, 1998 Nov 01.
Article in English | MEDLINE | ID: mdl-9747805

ABSTRACT

An irregular pattern of transgene silencing was revealed in expression and inheritance studies conducted over multiple generations following transgene introduction by microprojectile bombardment of allohexaploid cultivated oat (Avena sativa L.). Expression of two transgenes, bar and uidA, delivered on the same plasmid was investigated in 23 transgenic oat lines. Twenty-one transgenic lines, each derived from an independently selected transformed tissue culture, showed expression of both bar and uidA while two lines expressed only bar. The relationship of the transgenic phenotypes to the presence of the transgenes in the study was determined using (1) phenotypic scoring combined with Southern blot analyses of progeny, (2) coexpression of the two transgenic phenotypes since the two transgenes always cosegregated, and (3) reactivation of a transgenic phenotype in self-pollinated progenies of transgenic plants that did not exhibit a transgenic phenotype. Transgene silencing was observed in 19 of the 23 transgenic lines and resulted in distorted segregation of transgenic phenotypes in 10 lines. Silencing and inheritance distortions were irregular and unpredictable. They were often reversible in a subsequent generation of self-pollinated progeny and abnormally segregating progenies were as likely to trace back to parents that exhibited normal segregation in a previous generation as to parents showing segregation distortions. Possible causes of the irregular patterns of transgene silencing are discussed.


Subject(s)
Avena/genetics , Genes, Plant , Acetyltransferases/genetics , Avena/enzymology , Gene Expression , Genes, Reporter , Glucuronidase/genetics , Phenotype , Plants, Genetically Modified , Polyploidy
2.
Plant Mol Biol ; 38(3): 347-56, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9747843

ABSTRACT

Regions of the sugarcane bacilliform badnavirus genome were tested for promoter activity. The genomic region spanning nucleotides 5999-7420 was shown to possess promoter activity as exemplified by its ability to drive the expression of the coding region of the uidA gene of Escherichia coli, in both Avena sativa and Arabidopsis thaliana. In A. sativa, the promoter was active in all organs examined and, with the exception of the anthers where the expression was localized, this activity was constitutive. In A. thaliana, the promoter activity was constitutive in the rosette leaf, stem, stamen, and root and limited primarily to vascular tissue in the sepal and the silique. The transgene was inherited and active in progeny plants of both A. sativa and A. thaliana.


Subject(s)
Badnavirus/genetics , Plants/virology , Promoter Regions, Genetic , Arabidopsis/genetics , Arabidopsis/virology , Avena/genetics , Avena/virology , Base Sequence , DNA Primers/genetics , Escherichia coli/genetics , Gene Expression , Genes, Bacterial , Genes, Reporter , Genome, Viral , Glucuronidase/genetics , Plants/genetics , Plants, Genetically Modified
3.
Plant Cell Rep ; 17(4): 284-287, 1998 Feb.
Article in English | MEDLINE | ID: mdl-30736607

ABSTRACT

The Commelina yellow mottle virus (CoYMV) infects the monocot weed Commelina diffusa. The objective of this study was to investigate the transgene expression conferred by the CoYMV promoter in a monocot species. Friable, embryogenic oat (Avena sativa L.) tissue cultures were stably transformed with the CoYMV promoter fused to the coding region of E. coli ß-glucuronidase (uidA, GUS). Developmental and tissue-specific expression of the CoYMV-GUS construct was investigated in regenerated plants and their progeny. Histochemical GUS staining was primarily localized in the vascular tissues of shoots, leaves, floral bracts and in roots. While ovaries stained intensely, no staining was detected in anthers or the endosperm in mature seed. The scutellum of mature and germinating seed exhibited GUS activity.

4.
Phytopathology ; 88(10): 1013-9, 1998 Oct.
Article in English | MEDLINE | ID: mdl-18944812

ABSTRACT

ABSTRACT Barley yellow dwarf viruses (BYDVs) are the most serious and widespread viruses of oats, barley, and wheat worldwide. Natural resistance is inadequate. Toward overcoming this limitation, we engineered virus-derived transgenic resistance in oat. Oat plants were transformed with the 5' half of the BYDV strain PAV genome, which includes the RNA-dependent RNA polymerase gene. In experiments on T2- and T3-generation plants descended from the same transformation event, all BYDV-inoculated plants containing the transgene showed disease symptoms initially, but recovered, flowered, and produced seed. In contrast, all but one of the BYDV-PAV-inoculated nontransgenic segregants died before reaching 25 cm in height. Although all of the recovered transgenic plants looked similar, the amount of virus and viral RNA ranged from substantial to undetectable levels. Thus, the transgene may act either by restricting virus accumulation or by a novel transgenic tolerance phenomenon. This work demonstrates a strategy for genetically stable transgenic resistance to BYDVs that should apply to all hosts of the virus.

5.
Plant Cell Rep ; 14(10): 635-40, 1995 Jul.
Article in English | MEDLINE | ID: mdl-24194311

ABSTRACT

Friable, embryogenic oat (Avena sativa L.) tissue cultures were stably transformed with two different plasmids containing the E. coli tn5 neomycin phosphotransferase II gene (npt II). Selection was accomplished using the antibiotic paromomycin sulfate following microprojectile bombardment. From two independent experiments, 88 paromomycin-resistant tissue cultures were shown to be transgenic based on Southern blot analysis and detection of the neomycin phosphotransferase (NPT II) protein using ELISA. Copy numbers of the npt II gene ranged from one to eight copies per haploid oat genome integrated into high molecular weight DNA of the paromomycin-resistant cultures. Plants were regenerated from 32 of the 88 transgenic tissue cultures. Plants from 17 of the 32 regenerable cultures exhibited fertility. Stable transformation was shown by segregation patterns of the NPT II protein in R1 seedlings produced from 16 fertile culture lines that were tested. The overall results demonstrate that the combination of the npt II gene and paromomycin provides efficient selection of transgenic oat tissue cultures. Oat plants transformed with the npt II gene present reduced ecological risk compared to the previously used herbicide-resistance selection system.

SELECTION OF CITATIONS
SEARCH DETAIL
...