Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
HGG Adv ; 5(3): 100319, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38872309

ABSTRACT

Since the first genome-wide association studies (GWASs), thousands of variant-trait associations have been discovered. However, comprehensively mapping the genetic determinant of complex traits through univariate testing can require prohibitive sample sizes. Multi-trait GWAS can circumvent this issue and improve statistical power by leveraging the joint genetic architecture of human phenotypes. Although many methodological hurdles of multi-trait testing have been solved, the strategy to select traits has been overlooked. In this study, we conducted multi-trait GWAS on approximately 20,000 combinations of 72 traits using an omnibus test as implemented in the Joint Analysis of Summary Statistics. We assessed which genetic features of the sets of traits analyzed were associated with an increased detection of variants compared with univariate screening. Several features of the set of traits, including the heritability, the number of traits, and the genetic correlation, drive the multi-trait test gain. Using these features jointly in predictive models captures a large fraction of the power gain of the multi-trait test (Pearson's r between the observed and predicted gain equals 0.43, p < 1.6 × 10-60). Applying an alternative multi-trait approach (Multi-Trait Analysis of GWAS), we identified similar features of interest, but with an overall 70% lower number of new associations. Finally, selecting sets based on our data-driven models systematically outperformed the common strategy of selecting clinically similar traits. This work provides a unique picture of the determinant of multi-trait GWAS statistical power and outlines practical strategies for multi-trait testing.


Subject(s)
Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Models, Genetic , Quantitative Trait, Heritable
2.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961722

ABSTRACT

Since the first Genome-Wide Association Studies (GWAS), thousands of variant-trait associations have been discovered. However, the sample size required to detect additional variants using standard univariate association screening is increasingly prohibitive. Multi-trait GWAS offers a relevant alternative: it can improve statistical power and lead to new insights about gene function and the joint genetic architecture of human phenotypes. Although many methodological hurdles of multi-trait testing have been discussed, the strategy to select trait, among overwhelming possibilities, has been overlooked. In this study, we conducted extensive multi-trait tests using JASS (Joint Analysis of Summary Statistics) and assessed which genetic features of the analysed sets were associated with an increased detection of variants as compared to univariate screening. Our analyses identified multiple factors associated with the gain in the association detection in multi-trait tests. Together, these factors of the analysed sets are predictive of the gain of the multi-trait test (Pearson's ρ equal to 0.43 between the observed and predicted gain, P < 1.6 × 10-60). Applying an alternative multi-trait approach (MTAG, multi-trait analysis of GWAS), we found that in most scenarios but particularly those with larger numbers of traits, JASS outperformed MTAG. Finally, we benchmark several strategies to select set of traits including the prevalent strategy of selecting clinically similar traits, which systematically underperformed selecting clinically heterogenous traits or selecting sets that issued from our data-driven models. This work provides a unique picture of the determinant of multi-trait GWAS statistical power and outline practical strategies for multi-trait testing.

3.
PLoS One ; 18(6): e0286811, 2023.
Article in English | MEDLINE | ID: mdl-37285372

ABSTRACT

Success in STEM (Science, Technology, Engineering, and Math) remains influenced by race, gender, and socioeconomic status. Here, we focus on the impact of gender on question-asking behavior during the 2021 JOBIM virtual conference (Journées Ouvertes en Biologie et Mathématiques). We gathered quantitative and qualitative data including : demographic information, question asking motivations, live observations and interviews of participants. Quantitative analyses include unprecedented figures such as the fraction of the audience identifying as LGBTQIA+ and an increased attendance of women in virtual conferences. Although parity was reached in the audience, women asked half as many questions as men. This under-representation persisted after accounting for seniority of the asker. Interviews of participants highlighted several barriers to oral expression encountered by women and gender minorities : negative reactions to their speech, discouragement to pursue a career in research, and gender discrimination/sexual harassment. Informed by the study, guidelines for conference organizers have been written. The story behind the making of this study has been highlighted in a Nature Career article.


Subject(s)
Sexism , Sexual Harassment , Male , Humans , Female , Speech , Social Class , Bias
4.
Bioinformatics ; 37(1): 89-96, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33416858

ABSTRACT

MOTIVATION: One avenue to address the paucity of clinically testable targets is to reinvestigate the druggable genome by tackling complicated types of targets such as Protein-Protein Interactions (PPIs). Given the challenge to target those interfaces with small chemical compounds, it has become clear that learning from successful examples of PPI modulation is a powerful strategy. Freely accessible databases of PPI modulators that provide the community with tractable chemical and pharmacological data, as well as powerful tools to query them, are therefore essential to stimulate new drug discovery projects on PPI targets. RESULTS: Here, we present the new version iPPI-DB, our manually curated database of PPI modulators. In this completely redesigned version of the database, we introduce a new web interface relying on crowdsourcing for the maintenance of the database. This interface was created to enable community contributions, whereby external experts can suggest new database entries. Moreover, the data model, the graphical interface, and the tools to query the database have been completely modernized and improved. We added new PPI modulators, new PPI targets and extended our focus to stabilizers of PPIs as well. AVAILABILITY AND IMPLEMENTATION: The iPPI-DB server is available at https://ippidb.pasteur.fr The source code for this server is available at https://gitlab.pasteur.fr/ippidb/ippidb-web/ and is distributed under GPL licence (http://www.gnu.org/licences/gpl). Queries can be shared through persistent links according to the FAIR data standards. Data can be downloaded from the website as csv files. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Microb Genom ; 6(10)2020 10.
Article in English | MEDLINE | ID: mdl-33034553

ABSTRACT

Thiomonas bacteria are ubiquitous at acid mine drainage sites and play key roles in the remediation of water at these locations by oxidizing arsenite to arsenate, favouring the sorption of arsenic by iron oxides and their coprecipitation. Understanding the adaptive capacities of these bacteria is crucial to revealing how they persist and remain active in such extreme conditions. Interestingly, it was previously observed that after exposure to arsenite, when grown in a biofilm, some strains of Thiomonas bacteria develop variants that are more resistant to arsenic. Here, we identified the mechanisms involved in the emergence of such variants in biofilms. We found that the percentage of variants generated increased in the presence of high concentrations of arsenite (5.33 mM), especially in the detached cells after growth under biofilm-forming conditions. Analysis of gene expression in the parent strain CB2 revealed that genes involved in DNA repair were upregulated in the conditions where variants were observed. Finally, we assessed the phenotypes and genomes of the subsequent variants generated to evaluate the number of mutations compared to the parent strain. We determined that multiple point mutations accumulated after exposure to arsenite when cells were grown under biofilm conditions. Some of these mutations were found in what is referred to as ICE19, a genomic island (GI) carrying arsenic-resistance genes, also harbouring characteristics of an integrative and conjugative element (ICE). The mutations likely favoured the excision and duplication of this GI. This research aids in understanding how Thiomonas bacteria adapt to highly toxic environments, and, more generally, provides a window to bacterial genome evolution in extreme environments.


Subject(s)
Arsenites/metabolism , Biofilms/growth & development , Burkholderiales , Genome, Bacterial/genetics , Adaptation, Physiological/genetics , Arsenates/metabolism , Arsenic/metabolism , Burkholderiales/genetics , Burkholderiales/growth & development , Burkholderiales/metabolism , DNA Repair/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Gene Expression Profiling , Genetic Variation/genetics , Genomic Islands/genetics , Mining , Whole Genome Sequencing
6.
FASEB J ; 30(10): 3578-3587, 2016 10.
Article in English | MEDLINE | ID: mdl-27451412

ABSTRACT

DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs.


Subject(s)
Cilia/metabolism , Dyslexia/metabolism , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Regulatory Factor X Transcription Factors/metabolism , Animals , Binding Sites/genetics , Caenorhabditis elegans , Cells, Cultured , Cytoskeletal Proteins , Genes, Reporter , Humans
7.
PLoS Biol ; 12(9): e1001942, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25181317

ABSTRACT

Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and ß-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT.


Subject(s)
Cupriavidus/genetics , Gene Transfer, Horizontal , Genes, Bacterial , Genome, Bacterial , Plasmids/metabolism , Ralstonia solanacearum/genetics , ATP-Binding Cassette Transporters/genetics , Adaptation, Physiological/genetics , Biological Evolution , Fabaceae/microbiology , Fabaceae/physiology , Mimosa/microbiology , Mimosa/physiology , Mutation , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...