Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 510(7503): 152-6, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24739972

ABSTRACT

T-helper-17 (TH17) cells have critical roles in mucosal defence and in autoimmune disease pathogenesis. They are most abundant in the small intestine lamina propria, where their presence requires colonization of mice with microbiota. Segmented filamentous bacteria (SFB) are sufficient to induce TH17 cells and to promote TH17-dependent autoimmune disease in animal models. However, the specificity of TH17 cells, the mechanism of their induction by distinct bacteria, and the means by which they foster tissue-specific inflammation remain unknown. Here we show that the T-cell antigen receptor (TCR) repertoire of intestinal TH17 cells in SFB-colonized mice has minimal overlap with that of other intestinal CD4(+) T cells and that most TH17 cells, but not other T cells, recognize antigens encoded by SFB. T cells with antigen receptors specific for SFB-encoded peptides differentiated into RORγt-expressing TH17 cells, even if SFB-colonized mice also harboured a strong TH1 cell inducer, Listeria monocytogenes, in their intestine. The match of T-cell effector function with antigen specificity is thus determined by the type of bacteria that produce the antigen. These findings have significant implications for understanding how commensal microbiota contribute to organ-specific autoimmunity and for developing novel mucosal vaccines.


Subject(s)
Antigens, Bacterial/immunology , Gram-Positive Bacteria/immunology , Intestines/immunology , Symbiosis , Th17 Cells/immunology , Animals , Antigens, Bacterial/chemistry , Bacterial Vaccines , Cell Differentiation , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Gram-Positive Bacteria/chemistry , Hybridomas/immunology , Immunity, Mucosal/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestine, Small/cytology , Intestine, Small/immunology , Intestines/cytology , Listeria monocytogenes/immunology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Antigen, T-Cell/immunology , Th17 Cells/cytology
2.
F1000Res ; 3: 123, 2014.
Article in English | MEDLINE | ID: mdl-26664698

ABSTRACT

OBJECTIVE: The antenatal prevalence of syphilis and HIV/AIDS in migrants and refugees is poorly documented. The aim of this study was to audit the first year of routine syphilis screening in the same population and reassess the trends in HIV rates. METHODS: From August 2012 to July 2013, 3600 pregnant women were screened for HIV (ELISA) and syphilis (VDRL with TPHA confirmation) at clinics along the Thai-Myanmar border. RESULTS: Seroprevalence for HIV 0.47% (95% CI 0.30-0.76) (17/3,599), and syphilis 0.39% (95% CI 0.23-0.65) (14/3,592), were low. Syphilis was significantly lower in refugees (0.07% 95% CI 0.01-0.38) (1/1,469), than in migrants (0.61% 95% CI 0.36-1.04) (13/2,123). The three active (VDRL≥1:8 and TPHA reactive) syphilis cases with VDRL titres of 1:32 were easy to counsel and treat. Women with low VDRL titres (>75% were < 1:8) and TPHA reactive results, in the absence of symptoms and both the woman and her husband having only one sexual partner in their lifetime, and the inability to determine the true cause of the positive results presented ethical difficulties for counsellors. CONCLUSION: As HIV and syphilis testing becomes available in more and more settings, the potential impact of false positive results should be considered, especially in populations with low prevalence for these diseases. This uncertainty must be considered in order to counsel patients and partners accurately and safely about the results of these tests, without exposing women to increased risk for abuse or abandonment. Our findings highlight the complexities of counselling patients about these tests and the global need for more conclusive syphilis testing strategies.

3.
Immunol Res ; 54(1-3): 50-68, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22460741

ABSTRACT

Genetic composition and major histocompatibility complex polymorphisms unequivocally predispose to autoimmune disease, but environmental factors also play a critical role in precipitating disease in susceptible individuals. Notorious among these has been microbial infection. Older studies describing associations between microbial infection and autoimmune disease are now followed by new studies demonstrating correlations between susceptibility to autoimmune disease and commensal colonization of the intestinal tract. T helper 17 (T(H)17) cells have gained a prominent role in autoimmune disease, and notably, their development within the intestine has been linked to colonization with specific commensal bacteria. Here, we consider current views on how microbes, T(H)17 cells, and autoimmunity are connected. We speculate on how the intricate relationships among commensal, pathogen, and the host might ultimately determine susceptibility to autoimmune disease.


Subject(s)
Autoimmune Diseases/immunology , Intestines/microbiology , Th17 Cells/immunology , Animals , Autoimmune Diseases/microbiology , Autoimmunity , Humans , Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...