Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
World J Clin Cases ; 7(17): 2463-2476, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31559282

ABSTRACT

BACKGROUND: Crohn's disease (CD) is a complex disorder resulting from the interaction of genetic, environmental, and microbial factors. The pathogenic process may potentially affect any segment of the gastrointestinal tract, but a selective location in the terminal ileum was reported in 50% of patients. AIM: To characterize clinical sub-phenotypes (colonic and/or ileal) within the same disease, in order to identify new therapeutic targets. METHODS: 14 consecutive patients undergoing surgery for ileal CD were recruited for this study. Peripheral blood samples from each patient were collected and the main polymorphisms of the gene Card15/Nod2 (R702W, G908R, and 1007fs) were analyzed in each sample. In addition, tissue samples were taken from both the tract affected by CD and from the apparently healthy and disease-free margins (internal controls). We used a multiplex gene assay in specimens obtained from patients with ileal localization of CD to evaluate the simultaneous expression of 24 genes involved in the pathogenesis of the disease. We also processed surgery gut samples with routine light microscopy (LM) and transmission electron microscopy (TEM) techniques to evaluate their structural and ultrastructural features. RESULTS: We found a significant increase of Th17 (IL17A and IL17F, IL 23R and CCR6) and Th1 (IFN-γ) gene expression in inflamed mucosa compared to non-inflamed sites of 14 CD patients. DEFB4 and HAMP, two genes coding for antimicrobial peptides, were also strongly activated in inflamed ileal mucosa, suggesting the overwhelming stimulation of epithelial cells by commensal microbiota. IFN-γ and CCR6 were more expressed in inflamed mucosa of CD patients with ileal localization compared with patients with colonic localization suggesting a more aggressive inflammation process in this site. Morphological analysis of the epithelial lining of Lieberkün crypts disclosed enhanced release activity from goblet mucocytes, whereas the lamina propria contained numerous cells pertaining to various lines. CONCLUSION: We observed that the expression of ileal genes related to Th1 and Th17 activity is strongly activated as well as the expression of genes involved in microbiota regulation.

2.
BMC Res Notes ; 5: 76, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22283984

ABSTRACT

BACKGROUND: Fulani ethnic group individuals are less susceptible than sympatric Mossi ethnic group, in term of malaria infection severity, and differ in antibody production against malaria antigens. The differences in susceptibility to malaria between Fulani and Mossi ethnic groups are thought to be regulated by different genetic backgrounds and offer the opportunity to compare haematological parameters, Tregs and γδT cell profiles in seasonal and stable malaria transmission settings in Burkina Faso. The study was conducted at two different time points i.e. during the high and low malaria transmission period. RESULTS: Two cross-sectional surveys were undertaken in adults above 20 years belonging either to the Fulani or the Mossi ethnic groups 1) at the peak of the malaria transmission season and 2) during the middle of the low malaria transmission season. Full blood counts, proportions of Tregs and γδ T cells were measured at both time-points.As previously shown the Fulani and Mossi ethnic groups showed a consistent difference in P. falciparum infection rates and parasite load. Differential white blood cell counts showed that the absolute lymphocyte counts were higher in the Mossi than in the Fulani ethnic group at both time points. While the proportion of CD4+CD25high was higher in the Fulani ethnic group at the peak of malaria transmission season (p = 0.03), no clear pattern emerged for T regulatory cells expressing FoxP3+ and CD127low. However CD3+γδ+ subpopulations were found to be higher in the Fulani compared to the Mossi ethnic group, and this difference was statistically significant at both time-points (p = 0.004 at low transmission season and p = 0.04 at peak of transmission). CONCLUSION: Our findings on regulatory T cell phenotypes suggest an interesting role for immune regulatory mechanisms in response to malaria. The study also suggests that TCRγδ + cells might contribute to the protection against malaria in the Fulani ethnic group involving their reported parasite inhibitory activities.

3.
Immunome Res ; 6: 10, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21092113

ABSTRACT

BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs). RESULTS: Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules. CONCLUSIONS: The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.

4.
Proc Natl Acad Sci U S A ; 105(2): 646-51, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18174328

ABSTRACT

Previous interethnic comparative studies on the susceptibility to malaria performed in West Africa showed that Fulani are more resistant to Plasmodium falciparum malaria than are sympatric ethnic groups. This lower susceptibility is not associated to classic malaria-resistance genes, and the analysis of the immune response to P. falciparum sporozoite and blood stage antigens, as well as non-malaria antigens, revealed higher immune reactivity in Fulani. In the present study we compared the expression profile of a panel of genes involved in immune response in peripheral blood mononuclear cells (PBMC) from Fulani and sympatric Mossi from Burkina Faso. An increased expression of T helper 1 (TH1)-related genes (IL-18, IFNgamma, and TBX21) and TH2-related genes (IL-4 and GATA3) and a reduced expression of genes distinctive of T regulatory activity (CTLA4 and FOXP3) were observed in Fulani. Microarray analysis on RNA from CD4+ CD25+ (T regulatory) cells, performed with a panel of cDNA probes specific for 96 genes involved in immune modulation, indicated obvious differences between the two ethnic groups with 23% of genes, including TGFbeta, TGFbetaRs, CTLA4, and FOXP3, less expressed in Fulani compared with Mossi and European donors not exposed to malaria. As further indications of a low T regulatory cell activity, Fulani showed lower serum levels of TGFbeta and higher concentrations of the proinflammatory chemokines CXCL10 and CCL22 compared with Mossi; moreover, the proliferative response of Fulani to malaria antigens was not affected by the depletion of CD25+ regulatory cells whereas that of Mossi was significantly increased. The results suggest that the higher resistance to malaria of the Fulani could derive from a functional deficit of T regulatory cells.


Subject(s)
Genetic Predisposition to Disease , Malaria, Falciparum/ethnology , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , T-Lymphocytes, Regulatory/parasitology , Adult , Animals , Burkina Faso , CD4-Positive T-Lymphocytes/parasitology , Cell Proliferation , Ethnicity , Female , Humans , Immune System , Interleukin-2 Receptor alpha Subunit/biosynthesis , Leukocytes, Mononuclear/parasitology , Male , Mali , Middle Aged
5.
Prostate ; 53(4): 310-21, 2002 Dec 01.
Article in English | MEDLINE | ID: mdl-12430142

ABSTRACT

BACKGROUND: Alterations in fibroblast growth factors (FGFs) production and/or FGF receptors expression have been described to play key roles in prostate tumor progression, particularly in androgen-independent tumors. However, the role of androgen receptor (AR) in altering FGF-mediated growth and survival of prostatic neoplastic cells has not been completely defined. In this study, we investigated the alterations in FGF2 production and utilization by the PC3 cell line, after transfection with a full-length AR. METHODS: FGF1,2,7, FGF-binding protein (FGF-BP) production and FGF receptor (FGFR) 1-4 expression were investigated by polymerase chain reaction (PCR) and Western blot analysis. RESULTS: De novo AR expression by PC3 cells restores FGFR2 IIIb isoform expression and sensitivity to FGF7 and FGF2. Androgen stimulation induces AR+ PC3 clones to secrete FGF-BP, likely responsible for activation and mobilization from the extracellular matrix of the high amounts of FGF2 produced by the same cells. In addition to the effects on cell proliferation, FGF2 maintains the survival of AR+ PC3 clones through a positive modulation of the Bcl-2 protein and down-modulates AR protein expression, allowing the escape of selected clones from androgen regulation. CONCLUSION: In the presence of an active AR, the combined production of FGF2 and FGF-BP may play an important role in the progression of prostate cancer through the selection of AR- clones expressing high levels of Bcl-2.


Subject(s)
Carrier Proteins/biosynthesis , Fibroblast Growth Factor 2/physiology , Prostatic Neoplasms/metabolism , Receptors, Androgen/physiology , Cell Division , Cell Survival , Down-Regulation , Fibroblast Growth Factor 1/biosynthesis , Fibroblast Growth Factor 7 , Fibroblast Growth Factors/biosynthesis , Humans , Intercellular Signaling Peptides and Proteins , Male , Prostatic Neoplasms/pathology , Receptor Protein-Tyrosine Kinases/analysis , Receptor, Fibroblast Growth Factor, Type 1 , Receptor, Fibroblast Growth Factor, Type 2 , Receptors, Androgen/analysis , Receptors, Fibroblast Growth Factor/analysis , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...