Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642480

ABSTRACT

BACKGROUND AND AIMS: Liver regeneration is essential for the preservation of homeostasis and survival. Bile acids (BAs)-mediated signaling is necessary for liver regeneration, but BAs levels need to be carefully controlled to avoid hepatotoxicity. We studied the early response of the BAs-fibroblast growth factor 19 (FGF19) axis in healthy individuals undergoing hepatectomy for living donor liver transplant. We also evaluated BAs synthesis in mice upon partial hepatectomy (PH) and acute inflammation, focusing on the regulation of cytochrome-7A1 (CYP7A1), a key enzyme in BAs synthesis from cholesterol. METHODS: Serum was obtained from twelve human liver donors. Mice underwent 2/3-PH or sham-operation. Acute inflammation was induced with bacterial lipopolysaccharide (LPS) in mice fed control or antoxidant-supplemented diets. BAs and 7α-hydroxy-4-cholesten-3-one (C4) levels were measured by HPLC-MS/MS; serum FGF19 by ELISA. Gene expression and protein levels were analyzed by RT-qPCR and western-blot. RESULTS: Serum BAs levels increased after PH. In patients with more pronounced hypercholanemia, FGF19 concentrations transiently rose, while C4 levels (a readout of CYP7A1 activity) dropped 2 h post-resection in all cases. Serum BAs and C4 followed the same pattern in mice 1 h after PH, but C4 levels also dropped in sham-operated and LPS-treated animals, without marked changes in CYP7A1 protein levels. LPS-induced serum C4 decline was attenuated in mice fed an antioxidant-supplemented diet. CONCLUSIONS: In human liver regeneration FGF19 upregulation may constitute a protective response from BAs excess during liver regeneration. Our findings suggest the existence of post-translational mechanisms regulating CYP7A1 activity, and therefore BAs synthesis, independent from CYP7A1/Cyp7a1 gene transcription.


Subject(s)
Bile Acids and Salts , Cholesterol 7-alpha-Hydroxylase , Fibroblast Growth Factors , Hepatectomy , Liver Regeneration , Humans , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/biosynthesis , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Liver Regeneration/drug effects , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Mice , Male , Female , Adult , Middle Aged , Liver/metabolism , Mice, Inbred C57BL , Liver Transplantation , Lipopolysaccharides/pharmacology
2.
Pediatr Res ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263451

ABSTRACT

BACKGROUND: Twenty percent of children with hepatoblastoma (HB) have lung metastasis at diagnosis. Treatment protocols recommend surgical removal of chemotherapy-refractory lung nodules, however no chronological order is established. As hepatectomy is followed by release of growth factors, it has been proposed that partial hepatectomy (PH) could boost local or distant residual tumor growth. METHODS: To evaluate the impact of PH on distant tumor growth, PH was performed in mice subcutaneously implanted with a HB patient-derived xenograft (PDX). The influence of PH on tumor growth at primary site was assessed by performing PH concomitantly to HB PDXs orthotopic implantation. RESULTS: Subcutaneously implanted HB PDX failed to show any influence of hepatectomy on tumor growth. Instead, intrahepatic tumor growth of one of the 4 HB PDXs implanted orthotopically was clearly enhanced. Cells derived from the hepatectomy-sensitive HB PDX exposed to hepatic growth factor (HGF) showed increased proliferation rate compared to cells derived from a hepatectomy-insensitive model, suggesting that the HGF/MET pathway could be one of the effectors of the crosstalk between liver regeneration and HB growth. CONCLUSION: These results suggest that hepatectomy can contribute to HB growth in some patients, further studies will be necessary to identify biomarkers predictive of patient risk of PH-induced HB recurrence. IMPACT: Key message: Cytokines and growth factors secreted following partial hepatectomy can contribute to intrahepatic tumor growth in some hepatoblastoma models. What does it add to the existing literature: It is the first article about the impact of liver regeneration induced by partial hepatectomy on hepatoblastoma local or distant tumoral growth in nude mice. What is the impact: It is important to identify the secreted factors that enhance tumor growth and to define biomarkers predictive of patient risk of partial hepatectomy-induced hepatoblastoma recurrence.

3.
Curr Opin Gastroenterol ; 40(2): 70-76, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38260939

ABSTRACT

PURPOSE OF REVIEW: In the pathophysiological context of cholangiopathies and more broadly of hepatopathies, while it is conceptually clear that the maintenance of inter-cholangiocyte and inter-hepatocyte tight junction integrity would be crucial for liver protection, only scarce studies have been devoted to this topic. Indeed, in the liver, alteration of tight junctions, the intercellular adhesion complexes that control paracellular permeability would result in leaky bile ducts and bile canaliculi, allowing bile reflux towards hepatic parenchyma, contributing to injury during the disease process. RECENT FINDINGS: Last decades have provided a great deal of information regarding both tight junction structural organization and signaling pathways related to tight junctions, providing clues about potential intervention to modulate paracellular permeability during cholangiopathies pathogenesis. Interestingly, several liver diseases have been reported to be associated with abnormal expression of one or several tight junction proteins. However, the question remains unanswered if these alterations would be primarily involved in the disease pathogenesis or if they would occur secondarily in the pathological course. SUMMARY: In this review, we provide an overview of tight junction disruptions described in various biliary diseases that should pave the way for defining new therapeutic targets in this field.


Subject(s)
Liver , Tight Junction Proteins , Humans , Tight Junction Proteins/metabolism , Liver/pathology , Bile Ducts , Tight Junctions/metabolism , Tight Junctions/pathology , Epithelial Cells
4.
Article in English | MEDLINE | ID: mdl-37224999

ABSTRACT

Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.


Subject(s)
Ceramides , Diabetes Mellitus, Type 2 , Animals , Mice , Bile Acids and Salts/metabolism , Ceramides/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Homeostasis , Liver/metabolism , Serine/metabolism , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Sphingomyelins/metabolism
5.
Mater Today Bio ; 19: 100554, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36756209

ABSTRACT

Liver tissue engineering approaches aim to support drug testing, assistance devices, or transplantation. However, their suitability for clinical application remains unsatisfactory. Herein, we demonstrate the beneficial and biocompatible use of porous pullulan-dextran hydrogel for the self-assembly of hepatocytes and biliary-like cells into functional 3D microtissues. Using HepaRG cells, we obtained 21 days maintenance of engineered liver polarity, functional detoxification and excretion systems, as well as glycogen storage in hydrogel. Implantation on two liver lobes in mice of hydrogels containing 3800 HepaRG 3D structures of 100 â€‹µm in diameter, indicated successful engraftment and no signs of liver toxicity after one month. Finally, after acetaminophen-induced liver failure, when mice were transplanted with engineered livers on left lobe and peritoneal cavity, the survival rate at 7 days significantly increased by 31.8% compared with mice without cell therapy. These findings support the clinical potential of pullulan-dextran hydrogel for liver failure management.

6.
Mol Metab ; 60: 101483, 2022 06.
Article in English | MEDLINE | ID: mdl-35367668

ABSTRACT

Fibroblast growth factor 19 (FGF19) is a hormone with pleiotropic metabolic functions, leading to ongoing development of analogues for treatment of metabolic disorders. On the other hand, FGF19 is overexpressed in a sub-group of hepatocellular carcinoma (HCC) patients and has oncogenic properties. It is therefore crucial to precisely define FGF19 effects, notably in the context of chronic exposure to elevated concentrations of the hormone. Here, we used hydrodynamic gene transfer to generate a transgenic mouse model with long-term FGF19 hepatic overexpression. We describe a novel effect of FGF19, namely the stimulation of water intake. This phenotype, lasting at least over a 6-month period, depends on signaling in the central nervous system and is independent of FGF21, although it mimics some of its features. We further show that HCC patients with high levels of circulating FGF19 have a reduced natremia, indicating dipsogenic features. The present study provides evidence of a new activity of FGF19, which could be clinically relevant in the context of FGF19 overexpressing cancers and in the course of treatment of metabolic disorders by FGF19 analogues.


Subject(s)
Carcinoma, Hepatocellular , Fibroblast Growth Factors/metabolism , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/metabolism , Drinking , Fibroblast Growth Factors/genetics , Hormones , Humans , Liver Neoplasms/metabolism , Mice , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism
7.
JHEP Rep ; 3(2): 100230, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33665587

ABSTRACT

BACKGROUND & AIMS: Bile-acid metabolism and the intestinal microbiota are impaired in alcohol-related liver disease. Activation of the bile-acid receptor TGR5 (or GPBAR1) controls both biliary homeostasis and inflammatory processes. We examined the role of TGR5 in alcohol-induced liver injury in mice. METHODS: We used TGR5-deficient (TGR5-KO) and wild-type (WT) female mice, fed alcohol or not, to study the involvement of liver macrophages, the intestinal microbiota (16S sequencing), and bile-acid profiles (high-performance liquid chromatography coupled to tandem mass spectrometry). Hepatic triglyceride accumulation and inflammatory processes were assessed in parallel. RESULTS: TGR5 deficiency worsened liver injury, as shown by greater steatosis and inflammation than in WT mice. Isolation of liver macrophages from WT and TGR5-KO alcohol-fed mice showed that TGR5 deficiency did not increase the pro-inflammatory phenotype of liver macrophages but increased their recruitment to the liver. TGR5 deficiency induced dysbiosis, independently of alcohol intake, and transplantation of the TGR5-KO intestinal microbiota to WT mice was sufficient to worsen alcohol-induced liver inflammation. Secondary bile-acid levels were markedly lower in alcohol-fed TGR5-KO than normally fed WT and TGR5-KO mice. Consistent with these results, predictive analysis showed the abundance of bacterial genes involved in bile-acid transformation to be lower in alcohol-fed TGR5-KO than WT mice. This altered bile-acid profile may explain, in particular, why bile-acid synthesis was not repressed and inflammatory processes were exacerbated. CONCLUSIONS: A lack of TGR5 was associated with worsening of alcohol-induced liver injury, a phenotype mainly related to intestinal microbiota dysbiosis and an altered bile-acid profile, following the consumption of alcohol. LAY SUMMARY: Excessive chronic alcohol intake can induce liver disease. Bile acids are molecules produced by the liver and can modulate disease severity. We addressed the specific role of TGR5, a bile-acid receptor. We found that TGR5 deficiency worsened alcohol-induced liver injury and induced both intestinal microbiota dysbiosis and bile-acid pool remodelling. Our data suggest that both the intestinal microbiota and TGR5 may be targeted in the context of human alcohol-induced liver injury.

8.
JHEP Rep ; 3(2): 100214, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33604531

ABSTRACT

BACKGROUND & AIMS: As the composition of the bile acid (BA) pool has a major impact on liver pathophysiology, we studied its regulation by the BA receptor Takeda G protein coupled receptor (TGR5), which promotes hepatoprotection against BA overload. METHODS: Wild-type, total and hepatocyte-specific TGR5-knockout, and TGR5-overexpressing mice were used in: partial (66%) and 89% extended hepatectomies (EHs) upon normal, ursodeoxycholic acid (UDCA)- or cholestyramine (CT)-enriched diet, bile duct ligation (BDL), cholic acid (CA)-enriched diet, and TGR5 agonist (RO) treatments. We thereby studied the impact of TGR5 on: BA composition, liver injury, regeneration and survival. We also performed analyses on the gut microbiota (GM) and gallbladder (GB). Liver BA composition was analysed in patients undergoing major hepatectomy. RESULTS: The TGR5-KO hyperhydrophobic BA composition was not directly related to altered BA synthesis, nor to TGR5-KO GM dysbiosis, as supported by hepatocyte-specific KO mice and co-housing experiments, respectively. The TGR5-dependent control of GB dilatation was crucial for BA composition, as determined by experiments including RO treatment and/or cholecystectomy. The poor TGR5-KO post-EH survival rate, related to exacerbated peribiliary necrosis and BA overload, was improved by shifting BAs toward a less toxic composition (CT treatment). After either BDL or a CA-enriched diet with or without cholecystectomy, we found that GB dilatation had strong TGR5-dependent hepatoprotective properties. In patients, a more hydrophobic liver BA composition was correlated with an unfavourable outcome after hepatectomy. CONCLUSIONS: BA composition is crucial for hepatoprotection in mice and humans. We indicate TGR5 as a key regulator of BA profile and thereby as a potential hepatoprotective target under BA overload conditions. LAY SUMMARY: Through multiple in vivo experimental approaches in mice, together with a patient study, this work brings some new light on the relationships between biliary homeostasis, gallbladder function, and liver protection. We showed that hepatic bile acid composition is crucial for optimal liver repair, not only in mice, but also in human patients undergoing major hepatectomy.

10.
Liver Int ; 40(5): 1005-1015, 2020 05.
Article in English | MEDLINE | ID: mdl-32145703

ABSTRACT

During liver repair after injury, bile secretion has to be tightly modulated in order to preserve liver parenchyma from bile acid (BA)-induced injury. The mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides their historical role in lipid digestion, bile acids (BA) and their receptors constitute a signalling network with multiple impacts on liver repair, both stimulating regeneration and protecting the liver from BA overload. BA signal through nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors to elicit a wide array of biological responses. While a great number of studies have been dedicated to the hepato-protective impact of FXR signalling, TGR5 is by far less explored in this context. Because the liver has to face massive and potentially harmful BA overload after partial ablation or destruction, BA-induced protective responses crucially contribute to spare liver repair capacities. Based on the available literature, the TGR5 BA receptor protects the remnant liver and maintains biliary homeostasis, mainly through the control of inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity and sinusoidal blood flow. Mouse experimental models of liver injury reveal that in the lack of TGR5, excessive inflammation, leaky biliary epithelium and hydrophobic BA overload result in parenchymal insult and compromise optimal restoration of a functional liver mass. Translational perspectives are thus opened to target TGR5 with the aim of protecting the liver in the context of injury and BA overload.


Subject(s)
Bile Acids and Salts , Receptors, G-Protein-Coupled , Animals , Liver , Liver Regeneration , Mice , Signal Transduction
11.
Gut ; 69(1): 146-157, 2020 01.
Article in English | MEDLINE | ID: mdl-30723104

ABSTRACT

OBJECTIVE: We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN: Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS: In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION: The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.


Subject(s)
Biliary Tract/physiopathology , Cholestasis, Intrahepatic/prevention & control , Receptors, G-Protein-Coupled/physiology , Animals , Bile/metabolism , Bile Acids and Salts/metabolism , Cell Adhesion Molecules/metabolism , Cells, Cultured , Cholestasis, Intrahepatic/metabolism , Electric Impedance , Epithelium/physiopathology , Isonipecotic Acids/pharmacology , Isonipecotic Acids/therapeutic use , Mice, Inbred C57BL , Mice, Knockout , Oximes/pharmacology , Oximes/therapeutic use , Permeability , Phosphorylation/physiology , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/agonists , Signal Transduction/physiology , Tight Junction Proteins/metabolism
12.
J Nutr Biochem ; 76: 108298, 2020 02.
Article in English | MEDLINE | ID: mdl-31812910

ABSTRACT

We investigated the implication of Takeda G protein-coupled receptor 5 (TGR5) in fat preference and fat sensing in taste bud cells (TBC) in C57BL/6 wild-type (WT) and TGR5 knock out (TGR5-/-) male mice maintained for 20 weeks on a high-fat diet (HFD). We also assessed the implication of TGR5 single nucleotide polymorphism (SNP) in young obese humans. The high-fat diet (HFD)-fed TGR5-/- mice were more obese, marked with higher liver weight, lipidemia and steatosis than WT obese mice. The TGR5-/- obese mice exhibited high daily food/energy intake, fat mass and inflammatory status. WT obese mice lost the preference for dietary fat, but the TGR5-/- obese mice exhibited no loss towards the attraction for lipids. In lingual TBC, the fatty acid-triggered Ca2+ signaling was decreased in WT obese mice; however, it was increased in TBC from TGR5-/- obese mice. Fatty acid-induced in vitro release of GLP-1 was higher, but PYY concentrations were lower, in TBC from TGR5-/- obese mice than those in WT obese mice. We noticed an association between obesity and variations in TGR5 rs11554825 SNP. Finally, we can state that TGR5 modulates fat eating behavior and obesity.


Subject(s)
Bile Acids and Salts/metabolism , Food Preferences , Lipids/chemistry , Obesity/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Animals , Blood Glucose/metabolism , Calcium/metabolism , Diet, High-Fat , Dietary Fats , Disease Models, Animal , Fatty Liver , Inflammation , Insulin/metabolism , Lipopolysaccharides/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Obesity/genetics , Polymorphism, Single Nucleotide
13.
Sci Rep ; 9(1): 18176, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796842

ABSTRACT

Regeneration is the unmatched liver ability for recovering its functional mass after tissue lost. Leukotrienes (LT) are a family of eicosanoids with the capacity of signaling to promote proliferation. We analyzed the impact of blocking LT synthesis during liver regeneration after partial hepatectomy (PH). Male Wistar rats were subjected to two-third PH and treated with zileuton, a specific inhibitor of 5-lipoxygenase (5-LOX). Our first find was a significant increment of intrahepatic LTB4 during the first hour after PH together with an increase in 5-LOX expression. Zileuton reduced hepatic LTB4 levels at the moment of hepatectomy and also inhibited the increase in hepatic LTB4. This inhibition produced a delay in liver proliferation as seen by decreased PCNA and cyclin D1 nuclear expression 24 h post-PH. Results also showed that hepatic LTB4 diminution by zileuton was associated with a decrease in NF-ĸB activity. Additionally, decreased hepatic LTB4 levels by zileuton affected the recruitment of neutrophils and macrophages. Non-parenchymal cells (NPCs) from zileuton-treated PH-rats displayed higher apoptosis than NPCs from PH control rats. In conclusion, the present work provides evidences that 5-LOX activation and its product LTB4 are involved in the initial signaling events for liver regeneration after PH and the pharmacological inhibition of this enzyme can delay the initial time course of the phenomenon.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Leukotriene B4/metabolism , Liver Regeneration/physiology , Liver/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cyclin D1/metabolism , Eicosanoids/metabolism , Hepatectomy/methods , Hydrogen-Ion Concentration , Hydroxyurea/analogs & derivatives , Hydroxyurea/pharmacology , Leukotrienes/metabolism , Liver/drug effects , Liver Regeneration/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , NF-kappa B/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/physiology
14.
Front Immunol ; 10: 2074, 2019.
Article in English | MEDLINE | ID: mdl-31552031

ABSTRACT

Extracellular nucleotides are important mediators of cell activation and trigger multiple responses via membrane receptors known as purinergic receptors (P2). P2X receptors are ligand-gated ion channels, activated by extracellular ATP. P2X4 is one of the most sensitive purinergic receptors, that is typically expressed by neurons, microglia, and some epithelial and endothelial cells. P2X4 mediates neuropathic pain via brain-derived neurotrophic factor and is also involved in inflammation in response to high ATP release. It is therefore involved in multiple inflammatory pathologies as well as neurodegenerative diseases. We have produced monoclonal antibodies (mAb) directed against this important human P2X4 receptor. Focusing on two mAbs, we showed that they also recognize mouse and rat P2X4. We demonstrated that these mAbs can be used in flow cytometry, immunoprecipitation, and immunohistochemistry, but not in Western blot assays, indicating that they target conformational epitopes. We also characterized the expression of P2X4 receptor on mouse and human peripheral blood lymphocytes (PBL). We showed that P2X4 is expressed at the surface of several leukocyte cell types, with the highest expression level on eosinophils, making them potentially sensitive to adenosine triphosphate (ATP). P2X4 is expressed by leucocytes, in human and mouse, with a significant gender difference, males having higher surface expression levels than females. Our findings reveal that PBL express significant levels of P2X4 receptor, and suggest an important role of this receptor in leukocyte activation by ATP, particularly in P2X4high expressing eosinophils.


Subject(s)
Eosinophils/immunology , Eosinophils/metabolism , Gene Expression , Receptors, Purinergic P2X4/genetics , Animals , Astrocytoma/genetics , Astrocytoma/metabolism , Biomarkers , Cell Line , Female , Glioma/genetics , Glioma/metabolism , Humans , Immunophenotyping , Leukocytes/immunology , Leukocytes/metabolism , Leukocytes/pathology , Male , Mice , Microglia/immunology , Microglia/metabolism , Receptors, Purinergic P2X4/metabolism
15.
Gastroenterology ; 157(3): 807-822, 2019 09.
Article in English | MEDLINE | ID: mdl-31194980

ABSTRACT

BACKGROUND & AIMS: In one-third of hepatocellular carcinomas (HCCs), cancer cells have mutations that activate ß-catenin pathway. These cells have alterations in glutamine, bile, and lipid metabolism. We investigated whether positron emission tomography (PET) imaging allows identification of altered metabolic pathways that might be targeted therapeutically. METHODS: We studied mice with activation of ß-catenin in liver (Apcko-liv mice) and male C57Bl/6 mice given injections of diethylnitrosamine, which each develop HCCs. Mice were fed a conventional or a methionine- and choline-deficient diet or a choline-deficient (CD) diet. Choline uptake and metabolism in HCCs were analyzed by micro-PET imaging of mice; livers were collected and analyzed by histologic, metabolomic, messenger RNA quantification, and RNA-sequencing analyses. Fifty-two patients with HCC underwent PET imaging with 18F-fluorodeoxyglucose, followed by 18F-fluorocholine tracer metabolites. Human HCC specimens were analyzed by immunohistochemistry, quantitative polymerase chain reaction, and DNA sequencing. We used hepatocytes and mouse tumor explants for studies of incorporation of radiolabeled choline into phospholipids and its contribution to DNA methylation. We analyzed HCC progression in mice fed a CD diet. RESULTS: Livers and tumors from Apcko-liv mice had increased uptake of dietary choline, which contributes to phospholipid formation and DNA methylation in hepatocytes. In patients and in mice, HCCs with activated ß-catenin were positive in 18F-fluorocholine PET, but not 18F-fluorodeoxyglucose PET, and they overexpressed the choline transporter organic cation transporter 3. The HCC cells from Apcko-liv mice incorporated radiolabeled methyl groups of choline into phospholipids and DNA. In Apcko-liv mice, the methionine- and choline-deficient diet reduced proliferation and DNA hypermethylation of hepatocytes and HCC cells, and the CD diet reduced long-term progression of tumors. CONCLUSIONS: In mice and humans, HCCs with mutations that activate ß-catenin are characterized by increased uptake of a fluorocholine tracer, but not 18F-fluorodeoxyglucose, revealed by PET. The increased uptake of choline by HCCs promotes phospholipid formation, DNA hypermethylation, and hepatocyte proliferation. In mice, the CD diet reverses these effects and promotes regression of HCCs that overexpress ß-catenin.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Mutation , Positron-Emission Tomography , beta Catenin/genetics , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Choline/administration & dosage , Choline/analogs & derivatives , Choline Deficiency/complications , DNA Methylation , Diethylnitrosamine , Disease Models, Animal , Genes, APC , Genetic Predisposition to Disease , Humans , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Male , Methionine/deficiency , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phospholipids/metabolism , Predictive Value of Tests , Radiopharmaceuticals/administration & dosage , beta Catenin/metabolism
16.
J Hepatol ; 69(3): 644-653, 2018 09.
Article in English | MEDLINE | ID: mdl-29802948

ABSTRACT

BACKGROUND & AIMS: Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular ATP, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the purinergic receptor P2X4 (P2RX4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis. METHODS: In vivo, bile duct ligation was performed and methionine- and choline-deficient diet administered in wild-type and P2x4 knock-out (P2x4-KO) mice. In vitro, hMF were isolated from mouse (wild-type and P2x4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties. RESULTS: P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after bile duct ligation or methionine- and choline-deficient diet. Human and mouse hMFs expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMFs blunted their activation marker expression and their fibrogenic properties. Finally, we showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, impacting on ATP release, profibrogenic secretory profile, and transcription factor activation. CONCLUSION: P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases. LAY SUMMARY: During chronic injury, the liver often repairs with fibrotic tissue, which impairs liver function, and for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor P2X4, can modulate fibrotic liver repair. Therefore, this receptor could be of interest in the development of novel therapies for fibrotic liver diseases.


Subject(s)
Extracellular Matrix/metabolism , Liver Cirrhosis , Liver , Myofibroblasts , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X4/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Regeneration/physiology , Mice , Mice, Knockout , Myofibroblasts/metabolism , Myofibroblasts/pathology , Signal Transduction
18.
Fundam Clin Pharmacol ; 31(5): 486-494, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28370265

ABSTRACT

Zizyphin, isolated from Zizyphus sps. leaf extracts, has been shown to modulate sugar taste perception, and the palatability of a sweet solution is increased by the addition of fatty acids. We, therefore, studied whether zizyphin also modulates fat taste perception. Zizyphin was purified from edible fruit of Zizyphus lotus L. Zizyphin-induced increases in [Ca2+ ]i in human taste bud cells (hTBC). Zizyphin shared the endoplasmic reticulum Ca2+ pool and also recruited, in part, Ca2+ from extracellular environment via the opening of store-operated Ca2+ channels. Zizyphin exerted additive actions on linoleic acid (LA)-induced increases in [Ca2+ ]i in these cells, indicating that zizyphin does not exert its action via fatty acid receptors. However, zizyphin seemed to exert, at least in part, its action via bile acid receptor Takeda-G-protein-receptor-5 in hTBC. In behavioural tests, mice exhibited preference for both LA and zizyphin. Interestingly, zizyphin increased the preference for a solution containing-LA. This study is the first evidence of the modulation of fat taste perception by zizyphin at the cellular level in hTBC. Our study might be helpful for considering the synthesis of zizyphin analogues as 'taste modifiers' with a potential in the management of obesity and lipid-mediated disorders.


Subject(s)
Alkaloids/pharmacology , Calcium Signaling/drug effects , Dietary Fats/administration & dosage , Peptides, Cyclic/pharmacology , Taste Buds/drug effects , Taste Perception/drug effects , Ziziphus , Alkaloids/isolation & purification , Animals , Calcium Signaling/physiology , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptides, Cyclic/isolation & purification , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Receptors, G-Protein-Coupled/metabolism , Taste Buds/metabolism , Taste Perception/physiology
19.
Mol Aspects Med ; 56: 25-33, 2017 08.
Article in English | MEDLINE | ID: mdl-28302491

ABSTRACT

Tissue repair is orchestrated by a finely tuned interplay between processes of regeneration, inflammation and cell protection, allowing organisms to restore their integrity after partial loss of cells or organs. An important, although largely unexplored feature is that after injury and during liver repair, liver functions have to be maintained to fulfill the peripheral demand. This is particularly critical for bile secretion, which has to be finely modulated in order to preserve liver parenchyma from bile-induced injury. However, mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides cytokines and growth factors, bile acids (BA) and their receptors constitute an insufficiently explored signaling network during liver regeneration and repair. BA signal through both nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors which distributions are large in the organism, and which activation elicits a wide array of biological responses. While a number of studies have been dedicated to FXR signaling in liver repair processes, TGR5 remains poorly explored in this context. Because of the massive and potentially harmful BA overload that faces the remnant liver after partial ablation or destruction, both BA-induced adaptive and proliferative responses may stand in a central position to contribute to the regenerative response. Based on the available literature, both BA receptors may act in synergy during the regeneration process, in order to protect the remnant liver and maintain biliary homeostasis, otherwise potentially toxic BA overload would result in parenchymal insult and compromise optimal restoration of a functional liver mass.


Subject(s)
Bile Acids and Salts/metabolism , Gene Expression Regulation , Liver Regeneration/physiology , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Bile Acids and Salts/toxicity , Cholesterol/metabolism , Cytokines/genetics , Cytokines/metabolism , Hepatectomy , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Homeostasis/physiology , Humans , Liver/drug effects , Liver/injuries , Liver/metabolism , Liver/surgery , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
20.
Mol Cell Biol ; 37(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28223370

ABSTRACT

Transforming growth factor ß1 (TGF-ß1) is a master cytokine in many biological processes, including tissue homeostasis, epithelial-to-mesenchymal transition, and wound repair. Here, we report that four and a half LIM-only protein 2 (FHL2) is a critical regulator of TGF-ß1 expression. Devoid of a DNA-binding domain, FHL2 is a transcriptional cofactor that plays the role of coactivator or corepressor, depending on the cell and promoter contexts. We detected association of FHL2 with the TGF-ß1 promoter, which showed higher activity in Fhl2-/- cells than in wild-type (WT) cells in a reporter assay. Overexpression of FHL2 abrogates the activation of the TGF-ß1 promoter, whereas the upregulation of TGF-ß1 gene transcription correlates with reduced occupancy of FHL2 on the promoter. Moreover, ablation of FHL2 facilitates recruitment of RNA polymerase II on the TGF-ß1 promoter, suggesting that FHL2 may be involved in chromatin remodeling in the control of TGF-ß1 gene transcription. Enhanced expression of TGF-ß1 mRNA and cytokine was evidenced in the livers of Fhl2-/- mice. We tested the in vivo impact of Fhl2 loss on hepatic fibrogenesis that involves TGF-ß1 activation. Fhl2-/- mice developed more severe fibrosis than their WT counterparts. These results demonstrate the repressive function of FHL2 on TGF-ß1 expression and contribute to the understanding of the TGF-ß-mediated fibrogenic response.


Subject(s)
Gene Expression Regulation , LIM-Homeodomain Proteins/physiology , Muscle Proteins/physiology , Promoter Regions, Genetic , Transcription Factors/physiology , Transforming Growth Factor beta1/metabolism , Animals , Female , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcriptional Activation , Transforming Growth Factor beta1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...