Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nat Genet ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313616

ABSTRACT

Autosomal recessive coding variants are well-known causes of rare disorders. We quantified the contribution of these variants to developmental disorders in a large, ancestrally diverse cohort comprising 29,745 trios, of whom 20.4% had genetically inferred non-European ancestries. The estimated fraction of patients attributable to exome-wide autosomal recessive coding variants ranged from ~2-19% across genetically inferred ancestry groups and was significantly correlated with average autozygosity. Established autosomal recessive developmental disorder-associated (ARDD) genes explained 84.0% of the total autosomal recessive coding burden, and 34.4% of the burden in these established genes was explained by variants not already reported as pathogenic in ClinVar. Statistical analyses identified two novel ARDD genes: KBTBD2 and ZDHHC16. This study expands our understanding of the genetic architecture of developmental disorders across diverse genetically inferred ancestry groups and suggests that improving strategies for interpreting missense variants in known ARDD genes may help diagnose more patients than discovering the remaining genes.

2.
Res Sq ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39257968

ABSTRACT

Background: MED13L-related disorder is associated with intellectual disability, motor delay, and speech deficits. Previous studies have focused on broad clinical descriptions of individuals, but limited information regarding specific speech diagnoses and results of direct testing has been published to date. We conducted deep phenotyping to characterize the speech, language, motor, cognitive, and adaptive phenotypes of individuals with MED13L-related disorder. Methods: In this cross-sectional study, we administered standardized articulation, language, motor, and cognitive testing to 17 children and adolescents (mean age 9y 9m; SD 4y 5m; range 4y 2m to 19y 7m). In-person testing was supplemented with broad developmental, medical, and behavioral information collected virtually from a cohort of 67 individuals. Results: All individuals who completed in-person articulation testing met diagnostic criteria for speech apraxia, dysarthria, or both. Language impairment was present in all of the in-person cohort and almost all (97%) of the virtual cohort. Those who were able to complete motor testing demonstrated significant deficits in visual motor integration (mean 57.08, SD 9.26). Full scale IQs fell in the borderline to intellectual disability range, consistent with reported cognitive impairment in 97% of the virtual cohort. Notable medical features included hypotonia (83%), vision problems (72%), recurrent otitis media (58%), gastrointestinal problems (57%), and seizures (31%). Conclusions: MED13L-related disorder is characterized by a high rate of motor speech disorders that occur in the context of globally impaired motor, language, and cognitive skills. Children would benefit from intensive, individualized speech therapy and the early adoption of augmentative communication strategies.

3.
Am J Hum Genet ; 111(1): 70-81, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38091987

ABSTRACT

Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.


Subject(s)
Epilepsy , Neurodevelopmental Disorders , Humans , Retrospective Studies , Mutation/genetics , Epilepsy/genetics , Phenotype , Neurodevelopmental Disorders/genetics
4.
Nat Med ; 29(3): 667-678, 2023 03.
Article in English | MEDLINE | ID: mdl-36879130

ABSTRACT

Cerebral arachnoid cysts (ACs) are one of the most common and poorly understood types of developmental brain lesion. To begin to elucidate AC pathogenesis, we performed an integrated analysis of 617 patient-parent (trio) exomes, 152,898 human brain and mouse meningeal single-cell RNA sequencing transcriptomes and natural language processing data of patient medical records. We found that damaging de novo variants (DNVs) were highly enriched in patients with ACs compared with healthy individuals (P = 1.57 × 10-33). Seven genes harbored an exome-wide significant DNV burden. AC-associated genes were enriched for chromatin modifiers and converged in midgestational transcription networks essential for neural and meningeal development. Unsupervised clustering of patient phenotypes identified four AC subtypes and clinical severity correlated with the presence of a damaging DNV. These data provide insights into the coordinated regulation of brain and meningeal development and implicate epigenomic dysregulation due to DNVs in AC pathogenesis. Our results provide a preliminary indication that, in the appropriate clinical context, ACs may be considered radiographic harbingers of neurodevelopmental pathology warranting genetic testing and neurobehavioral follow-up. These data highlight the utility of a systems-level, multiomics approach to elucidate sporadic structural brain disease.


Subject(s)
Arachnoid Cysts , Multiomics , Humans , Animals , Mice , Arachnoid Cysts/diagnostic imaging , Arachnoid Cysts/genetics , Brain/diagnostic imaging , Exome/genetics , Genetic Testing
5.
Fam Cancer ; 21(4): 415-422, 2022 10.
Article in English | MEDLINE | ID: mdl-34981295

ABSTRACT

We aimed to determine whether monoallelic MUTYH pathogenic and likely pathogenic variants (PVs) are associated with colorectal, breast, and endometrial cancer. Cases were individuals with colorectal, female breast, or endometrial cancer who reported European ancestry alone and underwent a multi-gene hereditary cancer panel at a large reference laboratory. Controls were individuals of European (non-Finnish) descent from GnomAD with cancer cohorts removed. We performed a Fisher's exact test to generate odds ratios (ORs) with 95% confidence intervals (CI). Prevalence of single MUTYH PVs in cancer cohorts versus controls, respectively, was: colorectal cancer, 2.1% vs. 1.8% (OR 1.2, 95% CI 0.99-1.5, p = 0.064); breast cancer 1.9% vs. 1.7% (OR 1.1, 95% CI 0.96-1.3, p = 0.15); and endometrial cancer, 1.7% vs. 1.7% (OR 0.98; 95% CI 0.70-1.3, p = 0.94). Using the largest colorectal and endometrial cancer cohorts and one of the largest breast cancer cohorts from a single case-control study, we did not observe a significant difference in the prevalence of monoallelic MUTYH PVs in these cohorts compared to controls. Additionally, frequencies among cancer cohorts were consistent with the published MUTYH carrier frequency of 1-2%. These findings suggest there is no association between colorectal, endometrial, or breast cancer and MUTYH heterozygosity in individuals of European ancestry.


Subject(s)
Breast Neoplasms , Colorectal Neoplasms , DNA Glycosylases , Endometrial Neoplasms , Female , Humans , Breast Neoplasms/genetics , Case-Control Studies , Colorectal Neoplasms/genetics , DNA Glycosylases/genetics , Endometrial Neoplasms/genetics , Genetic Predisposition to Disease , Mutation
6.
JAMA ; 325(5): 467-475, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33528536

ABSTRACT

Importance: Cerebral palsy is a common neurodevelopmental disorder affecting movement and posture that often co-occurs with other neurodevelopmental disorders. Individual cases of cerebral palsy are often attributed to birth asphyxia; however, recent studies indicate that asphyxia accounts for less than 10% of cerebral palsy cases. Objective: To determine the molecular diagnostic yield of exome sequencing (prevalence of pathogenic and likely pathogenic variants) in individuals with cerebral palsy. Design, Setting, and Participants: A retrospective cohort study of patients with cerebral palsy that included a clinical laboratory referral cohort with data accrued between 2012 and 2018 and a health care-based cohort with data accrued between 2007 and 2017. Exposures: Exome sequencing with copy number variant detection. Main Outcomes and Measures: The primary outcome was the molecular diagnostic yield of exome sequencing. Results: Among 1345 patients from the clinical laboratory referral cohort, the median age was 8.8 years (interquartile range, 4.4-14.7 years; range, 0.1-66 years) and 601 (45%) were female. Among 181 patients in the health care-based cohort, the median age was 41.9 years (interquartile range, 28.0-59.6 years; range, 4.8-89 years) and 96 (53%) were female. The molecular diagnostic yield of exome sequencing was 32.7% (95% CI, 30.2%-35.2%) in the clinical laboratory referral cohort and 10.5% (95% CI, 6.0%-15.0%) in the health care-based cohort. The molecular diagnostic yield ranged from 11.2% (95% CI, 6.4%-16.2%) for patients without intellectual disability, epilepsy, or autism spectrum disorder to 32.9% (95% CI, 25.7%-40.1%) for patients with all 3 comorbidities. Pathogenic and likely pathogenic variants were identified in 229 genes (29.5% of 1526 patients); 86 genes were mutated in 2 or more patients (20.1% of 1526 patients) and 10 genes with mutations were independently identified in both cohorts (2.9% of 1526 patients). Conclusions and Relevance: Among 2 cohorts of patients with cerebral palsy who underwent exome sequencing, the prevalence of pathogenic and likely pathogenic variants was 32.7% in a cohort that predominantly consisted of pediatric patients and 10.5% in a cohort that predominantly consisted of adult patients. Further research is needed to understand the clinical implications of these findings.


Subject(s)
Cerebral Palsy/genetics , Exome Sequencing , Mutation , Adolescent , Adult , Cerebral Palsy/complications , Child , Child, Preschool , Cross-Sectional Studies , Female , Genetic Testing , Genetic Variation , Humans , Male , Middle Aged , Neurodevelopmental Disorders/complications , Neurodevelopmental Disorders/genetics , Prevalence , Retrospective Studies
7.
Genet Med ; 23(6): 1101-1107, 2021 06.
Article in English | MEDLINE | ID: mdl-33495530

ABSTRACT

PURPOSE: Data on the clinical prevalence and spectrum of uniparental disomy (UPD) remain limited. Trio exome sequencing (ES) presents a comprehensive method for detection of UPD alongside sequence and copy-number variant analysis. METHODS: We analyzed 32,067 ES trios referred for diagnostic testing to create a profile of UPD events and their disease associations. ES single-nucleotide polymorphism (SNP) and copy-number data were used to identify both whole-chromosome and segmental UPD and to categorize whole-chromosome results as isodisomy, heterodisomy, or mixed. RESULTS: Ninety-nine whole-chromosome and 13 segmental UPD events were identified. Of these, 29 were associated with an imprinting disorder, and 16 were associated with a positive test result through homozygous sequence variants. Isodisomy was more commonly observed in large chromosomes along with a higher rate of homozygous pathogenic variants, while heterodisomy was more frequent in chromosomes associated with imprinting or trisomy mosaicism (14, 15, 16, 20, 22). CONCLUSION: Whole-chromosome UPD was observed in 0.31% of cases, resulting in a diagnostic finding in 0.14%. Only three UPD-positive cases had a diagnostic finding unrelated to the UPD. Thirteen UPD events were identified in cases with prior normal SNP chromosomal microarray results, demonstrating the additional diagnostic value of UPD detection by trio ES.


Subject(s)
Exome , Uniparental Disomy , DNA Copy Number Variations/genetics , Exome/genetics , Homozygote , Humans , Uniparental Disomy/genetics , Exome Sequencing
8.
Am J Med Genet A ; 185(1): 208-212, 2021 01.
Article in English | MEDLINE | ID: mdl-33037780

ABSTRACT

We report the first case of blood chimerism involving a pathogenic RB1 variant in naturally conceived monochorionic-dizygotic twins (MC/DZ) with the twin-twin-transfusion syndrome (TTTS), presumably caused by the exchange of stem-cells. Twin A developed bilateral retinoblastoma at 7 months of age. Initial genetic testing identified a de novo RB1 pathogenic variant, with a 20% allelic ratio in both twins' blood. Subsequent genotyping of blood and skin confirmed dizygosity, with the affected twin harboring the RB1 pathogenic variant in skin and blood, and the unaffected twin carrying the variant only in blood.


Subject(s)
Fetofetal Transfusion/blood , Retinoblastoma Protein/genetics , Retinoblastoma/blood , Twins, Dizygotic/genetics , Chimerism , Female , Fetofetal Transfusion/genetics , Fetofetal Transfusion/pathology , Humans , Infant , Pregnancy , Pregnancy, Twin/blood , Pregnancy, Twin/genetics , Retinoblastoma/genetics , Retinoblastoma/pathology , Retinoblastoma Protein/blood , Stem Cells/metabolism , Stem Cells/pathology , Twins, Monozygotic/genetics , Ultrasonography, Prenatal
9.
Nature ; 586(7831): 757-762, 2020 10.
Article in English | MEDLINE | ID: mdl-33057194

ABSTRACT

De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.


Subject(s)
DNA Mutational Analysis , Data Analysis , Databases, Genetic , Datasets as Topic , Delivery of Health Care/statistics & numerical data , Developmental Disabilities/genetics , Genetic Diseases, Inborn/genetics , Cohort Studies , DNA Copy Number Variations/genetics , Developmental Disabilities/diagnosis , Europe , Female , Genetic Diseases, Inborn/diagnosis , Germ-Line Mutation/genetics , Haploinsufficiency/genetics , Humans , Male , Mutation, Missense/genetics , Penetrance , Perinatal Death , Sample Size
10.
Hum Genome Var ; 7: 24, 2020.
Article in English | MEDLINE | ID: mdl-32884827

ABSTRACT

Mobile element insertions (MEIs) contribute to genomic diversity, but they can be responsible for human disease in some cases. Initial clinical testing (BRCA1, BRCA2 and PALB2) in a 40-year-old female with unilateral breast cancer did not detect any pathogenic variants. Subsequent reanalysis for MEIs detected a novel likely pathogenic insertion of the retrotransposon element (RE) c.7894_7895insSVA in BRCA2. This case highlights the importance of bioinformatic pipeline optimization for the detection of MEIs in genes associated with hereditary cancer, as early detection can significantly impact clinical management.

11.
Genet Med ; 22(5): 974-978, 2020 05.
Article in English | MEDLINE | ID: mdl-31965078

ABSTRACT

PURPOSE: Exome sequencing (ES) is increasingly used for the diagnosis of rare genetic disease. However, some pathogenic sequence variants within the exome go undetected due to the technical difficulty of identifying them. Mobile element insertions (MEIs) are a known cause of genetic disease in humans but have been historically difficult to detect via ES and similar targeted sequencing methods. METHODS: We developed and applied a novel MEI detection method prospectively to samples received for clinical ES beginning in November 2017. Positive MEI findings were confirmed by an orthogonal method and reported back to the ordering provider. In this study, we examined 89,874 samples from 38,871 cases. RESULTS: Diagnostic MEIs were present in 0.03% (95% binomial test confidence interval: 0.02-0.06%) of all cases and account for 0.15% (95% binomial test confidence interval: 0.08-0.25%) of cases with a molecular diagnosis. One diagnostic MEI was a novel founder event. Most patients with pathogenic MEIs had prior genetic testing, three of whom had previous negative DNA sequencing analysis of the diagnostic gene. CONCLUSION: MEI detection from ES is a valuable diagnostic tool, reveals molecular findings that may be undetected by other sequencing assays, and increases diagnostic yield by 0.15%.


Subject(s)
Exome , Genetic Testing , Exome/genetics , Humans , Sequence Analysis, DNA , Exome Sequencing
12.
Acta Neuropathol ; 139(3): 415-442, 2020 03.
Article in English | MEDLINE | ID: mdl-31820119

ABSTRACT

Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.


Subject(s)
Brain Diseases/genetics , Epileptic Syndromes/genetics , Genes, Essential/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Animals , Child, Preschool , Female , Humans , Infant , Male , Mutation , Pedigree , Zebrafish
13.
Am J Hum Genet ; 105(6): 1274-1285, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31785789

ABSTRACT

While genes with an excess of de novo mutations (DNMs) have been identified in children with neurodevelopmental disorders (NDDs), few studies focus on DNM patterns where the sex of affected children is examined separately. We considered ∼8,825 sequenced parent-child trios (n ∼26,475 individuals) and identify 54 genes with a DNM enrichment in males (n = 18), females (n = 17), or overlapping in both the male and female subsets (n = 19). A replication cohort of 18,778 sequenced parent-child trios (n = 56,334 individuals) confirms 25 genes (n = 3 in males, n = 7 in females, n = 15 in both male and female subsets). As expected, we observe significant enrichment on the X chromosome for females but also find autosomal genes with potential sex bias (females, CDK13, ITPR1; males, CHD8, MBD5, SYNGAP1); 6.5% of females harbor a DNM in a female-enriched gene, whereas 2.7% of males have a DNM in a male-enriched gene. Sex-biased genes are enriched in transcriptional processes and chromatin binding, primarily reside in the nucleus of cells, and have brain expression. By downsampling, we find that DNM gene discovery is greatest when studying affected females. Finally, directly comparing de novo allele counts in NDD-affected males and females identifies one replicated genome-wide significant gene (DDX3X) with locus-specific enrichment in females. Our sex-based DNM enrichment analysis identifies candidate NDD genes differentially affecting males and females and indicates that the study of females with NDDs leads to greater gene discovery consistent with the female-protective effect.


Subject(s)
Exome/genetics , Genetic Markers , Mutation , Neurodevelopmental Disorders/genetics , Child , Cohort Studies , Female , Gene Regulatory Networks , Genome-Wide Association Study , Humans , Male , Neurodevelopmental Disorders/pathology , Phenotype , Sex Factors
14.
Article in English | MEDLINE | ID: mdl-31341520

ABSTRACT

BACKGROUND: Genes in the homologous recombination pathway have shown varying results in the literature regarding ovarian cancer (OC) association. Recent case-control studies have used allele counts alone to quantify genetic associations with cancer. METHODS: A retrospective case-control study was performed on 6,182 women with OC referred for hereditary cancer multi-gene panel testing (cases) and 4,690 mothers from trios who were referred for whole-exome sequencing (controls). We present age-adjusted odds ratios (ORAdj) to determine association of OC with pathogenic variants (PVs) in homologous recombination genes. RESULTS: Significant associations with OC were observed in BRCA1, BRCA2, RAD51C and RAD51D. Other homologous recombination genes, BARD1, NBN, and PALB2, were not significantly associated with OC. ATM and CHEK2 were only significantly associated with OC by crude odds ratio (ORCrude) or by ORAdj, respectively. However, there was no significant difference between ORCrude and ORAdj for these two genes. The significant association of PVs in BRIP1 by ORCrude (2.05, CI = 1.11 to 3.94, P = 0.03) was not observed by ORAdj (0.87, CI = 0.41 to 1.93, P = 0.73). Interestingly, the confidence intervals of the two effect sizes were significantly different (P = 0.04). CONCLUSION: The lack of association of PVs in BRIP1 with OC by ORAdj is inconsistent with some previous literature and current management recommendations, highlighted by the significantly older age of OC onset for BRIP1 PV carriers compared to non-carriers. By reporting ORAdj, this study presents associations that reflect more informed genetic contributions to OC when compared to traditional count-based methods.

15.
J Allergy Clin Immunol ; 144(3): 750-763, 2019 09.
Article in English | MEDLINE | ID: mdl-31129129

ABSTRACT

BACKGROUND: Hyperactivity of the IL-23/IL-17 axis is central to plaque psoriasis pathogenesis. Secukinumab, a fully human mAb that selectively inhibits IL-17A, is approved for treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis. Secukinumab improves the complete spectrum of psoriasis manifestations, with durable clinical responses beyond 5 years of treatment. In the feed-forward model of plaque chronicity, IL-17A has been hypothesized as the key driver of pathogenic gene expression by lesional keratinocytes, but in vivo evidence in human subjects is lacking. METHODS: We performed a randomized, double-blind, placebo-controlled study (NCT01537432) of patients receiving secukinumab at the clinically approved dose up to 12 weeks. We then correlated plaque and nonlesional skin transcriptomic profiles with histopathologic and clinical measures of efficacy. RESULTS: After 12 weeks of treatment, secukinumab reversed plaque histopathology in the majority of patients and modulated thousands of transcripts. Suppression of the IL-23/IL-17 axis by secukinumab was evident at week 1 and continued through week 12, including reductions in levels of the upstream cytokine IL-23, the drug target IL-17A, and downstream targets, including ß-defensin 2. Suppression of the IL-23/IL-17 axis by secukinumab at week 4 was associated with clinical and histologic responses at week 12. Secukinumab did not affect ex vivo T-cell activation, which is consistent with its favorable long-term safety profile. CONCLUSION: Our data suggest that IL-17A is the critical node within the multidimensional pathogenic immune circuits that maintain psoriasis plaques and that early reduction of IL-17A-dependent feed-forward transcripts synthesized by hyperplastic keratinocytes favors plaque resolution.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Interleukin-17/antagonists & inhibitors , Psoriasis/drug therapy , Antibodies, Monoclonal, Humanized/pharmacology , Double-Blind Method , Humans , Interleukin-23/antagonists & inhibitors , Psoriasis/genetics , Psoriasis/pathology , Skin/metabolism , Skin/pathology , Transcriptome/drug effects , Treatment Outcome
16.
Allergy ; 74(1): 141-151, 2019 01.
Article in English | MEDLINE | ID: mdl-29974963

ABSTRACT

BACKGROUND: Omalizumab, a humanized recombinant monoclonal anti-IgE antibody, proved to be effective in patients with chronic spontaneous urticaria (CSU), including severe and treatment-refractory CSU. Here, we report omalizumab's effect on gene expression in skin biopsies from CSU patients enrolled in a double-blind, placebo-controlled study. METHODS: Chronic spontaneous urticaria patients (18-75 years) were randomized to either 300 mg omalizumab (n = 20) or placebo (n = 10) administered s.c. every 4 weeks for 12 weeks (NCT01599637). Lesional and nonlesional skin biopsies were collected from the same area of consenting patients and assessed at baseline and on Day 85 compared with skin biopsies from the same area of 10 untreated healthy volunteers (HVs). Gene expression data were generated using Affymetrix HG-U133Plus2.0 microarrays. Statistical analyses were performed using R packages. RESULTS: At baseline, 63 transcripts were differentially expressed between lesional and nonlesional skin. Two-thirds of these lesional signatures were also differentially expressed between lesional and HV skin. Upon treatment with omalizumab, >75% of lesional signatures changed to reflect nonlesional skin expression levels (different vs placebo, P < 0.01). Transcripts upregulated in lesional skin (vs nonlesional and/or HV skin) suggested increased mast cell/leukocyte infiltration (FCER1G, C3AR1, CD93, S100A8, and S100A9), increased oxidative stress, vascularization (CYR61), and skin repair events (KRT6A, KRT16). Lesional signatures were not modulated by treatment in nonresponders (defined based on UAS7 longitudinal changes ≥16). CONCLUSION: Omalizumab, in treatment responders, reverted transcriptional signatures associated with CSU lesion phenotype to reflect nonlesional/HV expression levels; this is consistent with observed omalizumab-mediated clinical improvement observed in patients with CSU.


Subject(s)
Chronic Urticaria/drug therapy , Omalizumab/pharmacology , Transcriptome/drug effects , Adolescent , Adult , Aged , Anti-Allergic Agents/pharmacology , Biopsy , Chronic Urticaria/genetics , Double-Blind Method , Female , Humans , Male , Middle Aged , Omalizumab/therapeutic use , Skin/pathology , Treatment Outcome , Young Adult
17.
Gynecol Oncol ; 151(3): 481-488, 2018 12.
Article in English | MEDLINE | ID: mdl-30322717

ABSTRACT

OBJECTIVE: The recognition of genes implicated in ovarian cancer risk beyond BRCA1, BRCA2, and the Lynch syndrome genes has increased the variety of testing options available to providers and patients. We report the frequency of pathogenic variants identified among individuals with ovarian cancer undergoing clinical genetic testing via a multi-gene hereditary cancer panel. METHODS: Genetic testing of up to 32 genes using a hereditary cancer panel was performed on 4439 ovarian cancer cases, and results were analyzed for frequency of pathogenic variants. Statistical comparisons were made using t-tests and Fisher's exact tests. RESULTS: The positive yield was 13.2%. While BRCA1/2 pathogenic variants were most frequent, one third (33.7%) of positive findings were in other homologous recombination genes, and accounted for over 40.0% of findings in endometrioid and clear cell cases. Women with a personal history of breast cancer (22.1%), who reported a family history of ovarian cancer (17.7%), and/or serous histology (14.7%) were most likely to harbor a pathogenic variant. Those with very early onset (<30 years) and late onset (≥70 years) ovarian cancer had low positive yields. CONCLUSIONS: Our study highlights the genetic heterogeneity of ovarian cancer, showing that a large proportion of cases are not due to BRCA1/2 and the Lynch syndrome genes, but still have an identifiable hereditary basis. These findings substantiate the utility of multi-gene panel testing in ovarian cancer care regardless of age at diagnosis, family history, or histologic subtype, providing evidence for testing beyond BRCA1/2 and the Lynch syndrome genes.


Subject(s)
Germ-Line Mutation/genetics , Ovarian Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Middle Aged , Ovarian Neoplasms/pathology , Young Adult
18.
Ann Rheum Dis ; 76(1): 303-309, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27474763

ABSTRACT

OBJECTIVE: To explore whether gene expression profiling can identify a molecular mechanism for the clinical benefit of canakinumab treatment in patents with tumour necrosis factor receptor-associated periodic syndrome (TRAPS). METHODS: Blood samples were collected from 20 patients with active TRAPS who received canakinumab 150 mg every 4 weeks for 4 months in an open-label proof-of-concept phase II study, and from 20 aged-matched healthy volunteers. Gene expression levels were evaluated in whole blood samples by microarray analysis for arrays passing quality control checks. RESULTS: Patients with TRAPS exhibited a gene expression signature in blood that differed from that in healthy volunteers. Upon treatment with canakinumab, many genes relevant to disease pathogenesis moved towards levels seen in the healthy volunteers. Canakinumab downregulated the TRAPS-causing gene (TNF super family receptor 1A (TNFRSF1A)), the drug-target gene (interleukin (IL)-1B) and other inflammation-related genes (eg, MAPK14). In addition, several inflammation-related pathways were evident among the differentially expressed genes. Canakinumab treatment reduced neutrophil counts, but the observed expression differences remained after correction for this. CONCLUSIONS: These gene expression data support a model in which canakinumab produces clinical benefit in TRAPS by increasing neutrophil apoptosis and reducing pro-inflammatory signals resulting from the inhibition of IL-1ß. Notably, treatment normalised the overexpression of TNFRSF1A, suggesting that canakinumab has a direct impact on the main pathogenic mechanism in TRAPS. TRIAL REGISTRATION NUMBER: NCT01242813.


Subject(s)
Antibodies, Monoclonal/pharmacology , Familial Mediterranean Fever/genetics , Gene Expression Regulation/drug effects , Receptors, Tumor Necrosis Factor/genetics , Adolescent , Adult , Aged , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Child , Drug Administration Schedule , Familial Mediterranean Fever/drug therapy , Familial Mediterranean Fever/metabolism , Female , Gene Expression Profiling/methods , Genetic Predisposition to Disease , Humans , Interleukin-1beta/antagonists & inhibitors , Leukocyte Count , Male , Middle Aged , Neutrophils/drug effects , Receptors, Tumor Necrosis Factor/biosynthesis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL