Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 16(6): 1202-15, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22841778

ABSTRACT

Quantitative information about the geometry of the carotid artery bifurcation is relevant for investigating the onset and progression of atherosclerotic disease. This paper proposes an automatic approach for quantifying the carotid bifurcation angle, carotid area ratio, carotid bulb size and the vessel tortuosity from multispectral MRI. First, the internal and external carotid centerlines are determined by finding a minimum cost path between user-defined seed points where the local costs are based on medialness and intensity. The minimum cost path algorithm is iteratively applied after curved multi-planar reformatting to refine the centerline. Second, the carotid lumen is segmented using a topology preserving geodesic active contour which is initialized by the extracted centerlines and steered by the MR intensities. Third, the bifurcation angle and vessel tortuosity are automatically extracted from the segmented lumen. The methods for centerline tracking and lumen segmentation are evaluated by comparing their accuracy to the inter- and intra-observer variability on 48 datasets (96 carotid arteries) acquired as part of a longitudinal population study. The evaluation reveals that 94 of 96 carotid arteries are segmented successfully. The distance between the tracked centerlines and the reference standard (0.33 mm) is similar to the inter-observer variation (0.32 mm). The lumen segmentation accuracy (average DSC=0.89, average mean absolute surface distance=0.31 mm) is close to the inter-observer variation (average dice=0.92, average mean surface distance=0.23 mm). The correlation coefficient of manually and automaticly derived bifurcation angle, carotid proximal area ratio, carotid proximal bulb size and vessel totuosity quantifications are close to the correlation of these measures between observers. This demonstrates that the automated method can be used for replacing manual centerline annotation and manual contour drawing for lumen segmentation in MRIs data prior to quantifying the carotid bifurcation geometry.


Subject(s)
Algorithms , Artificial Intelligence , Carotid Arteries/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
2.
Med Image Comput Comput Assist Interv ; 13(Pt 3): 97-104, 2010.
Article in English | MEDLINE | ID: mdl-20879388

ABSTRACT

Quantitative information about the geometry of the carotid artery bifurcation may help in predicting the development of atherosclerosis. A geodesic active contours based segmentation method combining both gradient and intensity information was developed for semi-automatic, accurate and robust quantification of the carotid bifurcation angle in Black Blood MRA data. The segmentation method was evaluated by comparing its accuracy to inter and intra observer variability on a large dataset that has been acquired as part of a longitudinal population study which investigates the natural progression of carotid atherosclerosis. Furthermore, the method is shown to be robust to initialization differences. The bifurcation angle obtained from the segmented lumen corresponds well with the angle derived from the manual lumen segmentation, which demonstrates that the method has large potential to replace manual segmentations for extracting the carotid bifurcation angle from Black Blood MRA data.


Subject(s)
Algorithms , Carotid Arteries/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Magnetic Resonance Angiography/methods , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...