Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Laryngoscope Investig Otolaryngol ; 9(1): e1219, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38362183

ABSTRACT

Objectives: Approximately 25% of Americans suffer from laryngopharyngeal reflux (LPR), a disease for which no effective medical therapy exists. Pepsin is a predominant source of damage during LPR and a key therapeutic target. Fosamprenavir (FOS) inhibits pepsin and prevents damage in an LPR mouse model. Inhaled FOS protects at a lower dose than oral; however, the safety of inhaled FOS is unknown and there are no inhalers for laryngopharyngeal delivery. A pre-Good Lab Practice (GLP) study of inhaled FOS was performed to assess safety and computational fluid dynamics (CFD) modeling used to predict the optimal particle size for a laryngopharyngeal dry powder inhaler (DPI). Methods: Aerosolized FOS, amprenavir (APR), or air (control) were provided 5 days/week for 4 weeks (n = 6) in an LPR mouse model. Organs (nasal cavity, larynx, esophagus, trachea, lung, liver, heart, and kidney) were assessed by a pathologist and bronchoalveolar lavage cytokines and plasma cardiotoxicity markers were assessed by Luminex assay. CFD simulations were conducted in a model of a healthy 49-year-old female. Results: No significant increase was observed in histologic lesions, cytokines, or cardiotoxicity markers in FOS or APR groups relative to the control. CFD predicted that laryngopharyngeal deposition was maximized with aerodynamic diameters of 8.1-11.5 µm for inhalation rates of 30-60 L/min. Conclusions: A 4-week pre-GLP study supports the safety of inhaled FOS. A formal GLP assessment is underway to support a phase I clinical trial of an FOS DPI for LPR. Level of Evidence: NA.

2.
Vet Pathol ; 61(2): 298-302, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37650249

ABSTRACT

In September 2020, an outbreak of epizootic hemorrhagic disease occurred in captive reindeer (Rangifer tarandus) and was associated with neurological signs and mortality. Four reindeer died or were euthanized after acute illness over a 12-day period. Affected reindeer displayed abnormal behavior, neurologic signs, lethargy, and/or lameness. The most consistent gross finding was dark red streaks throughout the adrenal gland cortices (4/4). One animal had acute hemorrhage involving the subcutis and skeletal muscles over the ventrolateral body wall and back, and abomasal serosa. Histologically, the most common lesions were adrenal gland cortical hemorrhage (4/4) with necrosis (3/4) and lymphoplasmacytic meningoencephalitis with gliosis, glial nodules, satellitosis, and nonsuppurative perivascular cuffing (4/4). The brain lesions were most frequent in the gray matter of the cerebrum, hippocampus, and thalamus but also involved the cerebellum and brainstem. Epizootic hemorrhagic disease virus serotype 6 was detected through PCR and sequencing of the spleen in all cases.


Subject(s)
Reindeer , Animals , Hemorrhage/epidemiology , Hemorrhage/veterinary , Necrosis/veterinary , Adrenal Glands , Disease Outbreaks/veterinary
3.
bioRxiv ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36865329

ABSTRACT

Diffuse midline glioma (DMG) is a leading cause of brain tumor death in children. In addition to hallmark H3.3K27M mutations, significant subsets also harbor alterations of other genes, such as TP53 and PDGFRA. Despite the prevalence of H3.3K27M, the results of clinical trials in DMG have been mixed, possibly due to the lack of models recapitulating its genetic heterogeneity. To address this gap, we developed human iPSC-derived tumor models harboring TP53R248Q with or without heterozygous H3.3K27M and/or PDGFRAD842V overexpression. The combination of H3.3K27M and PDGFRAD842V resulted in more proliferative tumors when gene-edited neural progenitor (NP) cells were implanted into mouse brains compared to NP with either mutation alone. Transcriptomic comparison of tumors and their NP cells of origin identified conserved JAK/STAT pathway activation across genotypes as characteristic of malignant transformation. Conversely, integrated genome-wide epigenomic and transcriptomic analyses, as well as rational pharmacologic inhibition, revealed targetable vulnerabilities unique to the TP53R248Q; H3.3K27M; PDGFRAD842V tumors and related to their aggressive growth phenotype. These include AREG-mediated cell cycle control, altered metabolism, and vulnerability to combination ONC201/trametinib treatment. Taken together, these data suggest that cooperation between H3.3K27M and PDGFRA influences tumor biology, underscoring the need for better molecular stratification in DMG clinical trials.

4.
J Vet Diagn Invest ; 34(5): 796-805, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35762098

ABSTRACT

Adenoviral infections among raptors are best described in falcons and are characterized most commonly by necrotizing hepatitis and splenitis; only one case has been reported in a hawk. Five red-tailed hawks (Buteo jamaicensis) and a broad-winged hawk (Buteo platypterus) had an adenoviral infection based on history, histopathology, negative-stain electron microscopy, and PCR. All birds had acute onset of illness resulting in death; 3 had evidence of a concurrent bacterial infection. Microscopically, all 6 birds had solitary, pale eosinophilic-to-amphophilic, intranuclear inclusion bodies within presumed hematopoietic cells in bone marrow and macrophages in spleen. Five of the 6 birds had similar inclusions within hepatocytes and Kupffer cells. All but one bird had severe bone marrow necrosis. There was moderate splenic necrosis (3 of 6) and mild-to-marked hepatic necrosis (4 of 6). Negative-stain electron microscopy demonstrated adenoviral particles in bone marrow (5 of 6), liver (1 of 5), and/or spleen (1 of 5). PCR was positive for adenovirus in bone marrow (3 of 5), liver (1 of 3), spleen (4 of 6), and/or intestinal contents (2 of 3). Viral DNA polymerase gene sequences clustered within the Siadenovirus genus. There was 99% nucleotide identity to one another and 90% nucleotide identity with the closest related adenovirus (Harris hawk, EU715130). Our case series expands on the limited knowledge of adenoviral infections in hawks. The splenic and hepatic necrosis, and particularly the hitherto unreported bone marrow necrosis, suggest that adenoviral infection is clinically relevant and potentially fatal in hawks.


Subject(s)
Adenoviridae Infections , Bird Diseases , Hawks , Adenoviridae Infections/epidemiology , Adenoviridae Infections/veterinary , Animals , Bird Diseases/pathology , Birds , Necrosis/veterinary , Nucleotides
SELECTION OF CITATIONS
SEARCH DETAIL
...