Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
J Neurochem ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894552

ABSTRACT

During myelination, large quantities of proteins are synthesized and transported from the endoplasmic reticulum (ER)-trans-Golgi network (TGN) to their appropriate locations within the intracellular region and/or plasma membrane. It is widely believed that oligodendrocytes uptake neuronal signals from neurons to regulate the endocytosis- and exocytosis-mediated intracellular trafficking of major myelin proteins such as myelin-associated glycoprotein (MAG) and proteolipid protein 1 (PLP1). The small GTPases of the adenosine diphosphate (ADP) ribosylation factor (Arf) family constitute a large group of signal transduction molecules that act as regulators for intracellular signaling, vesicle sorting, or membrane trafficking in cells. Studies on mice deficient in Schwann cell-specific Arfs-related genes have revealed abnormal myelination formation in peripheral nerves, indicating that Arfs-mediated signaling transduction is required for myelination in Schwann cells. However, the complex roles in these events remain poorly understood. This review aims to provide an update on signal transduction, focusing on Arf and its activator ArfGEF (guanine nucleotide exchange factor for Arf) in oligodendrocytes and Schwann cells. Future studies are expected to provide important information regarding the cellular and physiological processes underlying the myelination of oligodendrocytes and Schwann cells and their function in modulating neural activity.

2.
Neural Regen Res ; 19(7): 1405-1406, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38051869
3.
iScience ; 26(10): 107448, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37720086

ABSTRACT

Multiple sclerosis (MS) is a leading disease that causes disability in young adults. We have previously shown that a DEAD-box RNA helicase Ddx54 binds to mRNA and protein isoforms of myelin basic protein (MBP) and that Ddx54 siRNA blocking abrogates oligodendrocyte migration and myelination. Herein, we show that MBP-driven Ddx54 knockout mice (Ddx54 fl/fl;MBP-Cre), after the completion of normal postnatal myelination, gradually develop abnormalities in behavioral profiles and learning ability, inner myelin sheath breakdown, loss of myelinated axons, apoptosis of oligodendrocytes, astrocyte and microglia activation, and they die within 7 months but show minimal peripheral immune cell infiltration. Myelin in Ddx54fl/fl;MBP-Cre is highly vulnerable to the neurotoxicant cuprizone and Ddx54 knockdown greatly impairs myelination in vitro. Ddx54 expression in oligodendrocyte-lineage cells decreased in corpus callosum of MS patients. Our results demonstrate that Ddx54 is indispensable for myelin homeostasis, and they provide a demyelinating disease model based on intrinsic disintegration of adult myelin.

4.
Neurol Int ; 15(3): 1155-1173, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37755363

ABSTRACT

Hypomyelinating leukodystrophies (HLDs) represent a group of congenital rare diseases for which the responsible genes have been identified in recent studies. In this review, we briefly describe the genetic/molecular mechanisms underlying the pathogenesis of HLD and the normal cellular functions of the related genes and proteins. An increasing number of studies have reported genetic mutations that cause protein misfolding, protein dysfunction, and/or mislocalization associated with HLD. Insight into the mechanisms of these pathways can provide new findings for the clinical treatments of HLD.

5.
Neurol Int ; 15(3): 980-993, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37606396

ABSTRACT

Frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTD/ALS7) is an autosomal dominant neurodegenerative disorder characterized by the onset of FTD and/or ALS, mainly in adulthood. Patients with some types of mutations, including the Thr104Asn (T104N) mutation of charged multivesicular body protein 2B (CHMP2B), have predominantly ALS phenotypes, whereas patients with other mutations have predominantly FTD phenotypes. A few mutations result in patients having both phenotypes approximately equally; however, the reason why phenotypes differ depending on the position of the mutation is unknown. CHMP2B comprises one part of the endosomal sorting complexes required for transport (ESCRT), specifically ESCRT-III, in the cytoplasm. We describe here, for the first time, that CHMP2B with the T104N mutation inhibits neuronal process elongation in the N1E-115 cell line, a model line undergoing neuronal differentiation. This inhibitory phenotype was accompanied by changes in marker protein expression. Of note, CHMP2B with the T104N mutation, but not the wild-type form, was preferentially accumulated in the Golgi body. Of the four major Golgi stress signaling pathways currently known, the pathway through Arf4, the small GTPase, was specifically upregulated in cells expressing CHMP2B with the T104N mutation. Conversely, knockdown of Arf4 with the cognate small interfering (si)RNA recovered the neuronal process elongation inhibited by the T104N mutation. These results suggest that the T104N mutation of CHMP2B inhibits morphological differentiation by triggering Golgi stress signaling, revealing a possible therapeutic molecular target for recovering potential molecular and cellular phenotypes underlying FTD/ALS7.

6.
Biochem Biophys Res Commun ; 664: 50-58, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37137223

ABSTRACT

The molecular mechanisms by which neuronal processes grow are extremely complicated, involving fine-tuned regulation of extracellular and intracellular signals. It remains to be elucidated which molecules are contained in the regulation. Herein, we report for the first time that heat shock protein family A member 5 (HSPA5, also called immunoglobulin heavy chain binding endoplasmic reticulum [ER] protein [BiP]) is secreted from mouse primary dorsal neuronal ganglion (DRG) cells or neuronal cell line N1E-115, a frequently used neuronal differentiation model. Supporting these results, HSPA5 protein was co-localized not only with ER antigen KDEL but also with intracellular vesicles such as Rab11-positive secretory vesicles. Unexpectedly, addition of HSPA5 inhibited elongation of neuronal processes, whereas neutralization of extracellular HSPA5 with the antibodies elongated processes, characterizing extracellular HSPA5 as a negative regulator of neuronal differentiation. Treatment of cells with neutralizing antibodies for low-density lipoprotein receptor (LDLR) did not have significant effects on process elongation, whereas LDLR-related protein 1 (LRP1) antibodies promoted differentiation, implying that LRP1 may act as a receptor candidate for HSPA5. Interestingly, extracellular HSPA5 was greatly decreased following treatment with tunicamycin, an ER stress inducer, illustrating that the ability to form neuronal processes could be preserved, even under stress. These results suggest that neuronal HSPA5 itself is secreted to contribute to inhibitory effects on neuronal cell morphological differentiation and can be included on the list of extracellular signaling molecules negatively controlling differentiation.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins , Mice , Animals , Heat-Shock Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Cell Line
7.
Glia ; 71(4): 1002-1017, 2023 04.
Article in English | MEDLINE | ID: mdl-36565228

ABSTRACT

Microtubule-associated protein Tau is primarily expressed in axons of neurons, but also in Olig2-positive oligodendrocytes in adult rodent and monkey brains. In this study, we sought to determine at what cell stage Tau becomes expressed in the oligodendrocyte lineage. We performed immunostaining of adult mouse brain sections using well-known markers of oligodendrocyte lineage and found that Tau is expressed in mature oligodendrocytes, but not in oligodendrocyte progenitors and immature pre-oligodendrocytes. We also investigated Tau expression in developing mouse brain. Surprisingly, Tau expression occurred after the peak of myelination and even exceeded GSTπ expression, which has been considered as a marker of myelinating oligodendrocytes. These results suggest Tau as a novel marker of oligodendrocyte maturation. We then investigated whether Tau is important for oligodendrocyte development and/or myelination and how Tau changes in demyelination. First, we found no changes in myelination and oligodendrocyte markers in Tau knockout mice, suggesting that Tau is dispensable. Next, we analyzed the proteolipid protein 1 transgenic model of Pelizaeus-Merzbacher disease, which is a rare leukodystrophy. In hemizygous transgenic mice, the number of Tau-positive cells were significantly increased as compared with wild type mice. These cells were also positive for Olig2, CC1, and GSTπ, but not PDGFRα and GPR17. In stark contrast, the expression level of Tau, as well as GSTπ, was dramatically decreased in the cuprizone-induced model of multiple sclerosis. Taken together, we propose Tau as a new marker of oligodendrocyte lineage and for investigating demyelination lesions.


Subject(s)
Demyelinating Diseases , Oligodendroglia , tau Proteins , Animals , Mice , Demyelinating Diseases/pathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Nerve Tissue Proteins/metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Receptors, G-Protein-Coupled/metabolism , tau Proteins/genetics , tau Proteins/metabolism
8.
Neurol Int ; 14(4): 1062-1080, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36548190

ABSTRACT

Hypomyelinating leukodystrophy 10 (HLD10) is an autosomal recessive disease related to myelin sheaths in the central nervous system (CNS). In the CNS, myelin sheaths are derived from differentiated plasma membranes of oligodendrocytes (oligodendroglial cells) and surround neuronal axons to achieve neuronal functions. Nucleotide mutations of the pyrroline-5-carboxylate reductase 2 (PYCR2) gene are associated with HLD10, likely due to PYCR2's loss-of-function. PYCR2 is a mitochondrial residential protein and catalyzes pyrroline-5-carboxylate to an amino acid proline. Here, we describe how each of the HLD10-associated missense mutations, Arg119-to-Cys [R119C] and Arg251-to-Cys [R251C], lead to forming large size mitochondria in the FBD-102b cell line, which is used as an oligodendroglial cell differentiation model. In contrast, the wild type proteins did not participate in the formation of large size mitochondria. Expression of each of the mutated R119C and R251C proteins in cells increased the fusion abilities in mitochondria and decreased their fission abilities relatively. The respective mutant proteins, but not wild type proteins also decreased the activities of mitochondria. While cells expressing the wild type proteins exhibited differentiated phenotypes with widespread membranes and increased expression levels of differentiation marker proteins following the induction of differentiation, cells harboring each of the mutant proteins did not. Taken together, these results indicate that an HLD10-associated PYCR2 mutation leads to the formation of large mitochondria with decreased activities, inhibiting oligodendroglial cell morphological differentiation. These results may reveal some of the pathological mechanisms in oligodendroglial cells underlying HLD10 at the molecular and cellular levels.

9.
Front Cell Dev Biol ; 10: 950682, 2022.
Article in English | MEDLINE | ID: mdl-36274848

ABSTRACT

Tau is abundantly expressed in neurons, however previous reports and our recent study showed tau also exist in oligodendrocytes. Also the expression levels of tau are dramatical changed in hypomyelination model rat and in demyelination region of stroke model mice. The review demonstrate microtubule and its binding partner Tau might be necessary for oligodendrocyte function based on previous reports.

10.
Sci Signal ; 15(718): eabi5276, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35077201

ABSTRACT

Mature myelin sheaths insulate axons to increase nerve conduction velocity and protect nerve fibers from stress and physical injury. In the peripheral nervous system, the myelin sheath is produced by Schwann cells. The guanine-nucleotide exchange factor cytohesin-2 activates the protein Arf6 to promote Schwann cell myelination. Here, we investigated the regulation of cytohesin-2 and found that the phosphorylation status of Tyr381 in cytohesin-2 is central to Schwann cell myelination. Knockin mice with a nonphosphorylatable Y381F mutation in cytohesin-2 exhibited reduced myelin thickness and decreased Arf6 activity in sciatic nerve tissue. In HEK293T cells, cytohesin-2 was dephosphorylated at Tyr381 by the protein tyrosine phosphatase PTP4A1, whereas phosphorylation at this site was maintained by interaction with the adaptor protein SH2B1. Schwann cell-specific knockdown of PTP4A1 in mice increased cytohesin-2 phosphorylation and myelin thickness. Conversely, Schwann cell-specific loss of SH2B1 resulted in reduced myelin thickness and decreased cytohesin-2 phosphorylation. Thus, a signaling unit centered on cytohesin-2-with SH2B1 as a positive regulator and PTP4A1 as a negative regulator-controls Schwann cell myelination in the peripheral nervous system.


Subject(s)
Myelin Sheath , Schwann Cells , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Axons/metabolism , Cell Cycle Proteins/metabolism , GTPase-Activating Proteins , HEK293 Cells , Humans , Immediate-Early Proteins , Membrane Proteins/metabolism , Mice , Myelin Sheath/genetics , Myelin Sheath/metabolism , Phosphorylation , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Schwann Cells/metabolism
11.
Mol Biol Cell ; 32(8): 769-787, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33596091

ABSTRACT

In the CNS, oligodendrocyte precursor cells differentiate into oligodendrocytes to wrap their plasma membranes around neuronal axons, generating mature neural networks with myelin sheaths according to spatial and temporal patterns. While myelination is known to be one of the most dynamic cell morphological changes, the overall intrinsic and extrinsic molecular cues controlling myelination remain to be fully clarified. Here, we describe the biphasic roles of Rnd2, an atypical branch of the Rho family GTPase, in oligodendrocyte myelination during development and after maturation in mice. Compared with littermate controls, oligodendrocyte-specific Rnd2 knockout mice exhibit decreased myelin thickness at the onset of myelination but increased myelin thickness in the later period. Larger proportions of Rho kinase and its substrate Mbs, the signaling unit that negatively regulates oligodendrocyte myelination, are phosphorylated at the onset of myelination, while their smaller proportions are phosphorylated in the later period. In addition, we confirm the biphasic role of Rnd2 through experiments with oligodendrocyte-specific Rnd2 transgenic mice. We conclude that Rnd2 positively regulates myelination in the early myelinating period and negatively regulates myelination in the later period. This unique modulator thus plays different roles depending on the myelination period.


Subject(s)
Myelin Sheath/metabolism , Oligodendroglia/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Cell Differentiation/physiology , Cells, Cultured , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Fibers, Myelinated/metabolism , Neurons/metabolism , Organogenesis , Signal Transduction , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/physiology
12.
Biochem Biophys Res Commun ; 531(4): 445-451, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32800341

ABSTRACT

Pelizaeus-Merzbacher disease (PMD) is characterized as a congenital hypomyelinating disorder in oligodendrocytes, myelin-forming glial cells in the central nervous system (CNS). The responsible gene of PMD is plp1, whose multiplication, deletion, or mutation is associated with PMD. We previously reported that primary oligodendrocytes overexpressing proteolipid protein 1 (PLP1) do not have the ability to differentiate morphologically, whereas inhibition of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) by its cognate siRNA or chemical inhibitor reverses their undifferentiated phenotypes. Here, we show that oligodendrocyte-specific expression of kinase-deficient dominant-inhibitory mutant (MEK2K101A) of MAPK/ERK kinase 2 (MEK2), as the direct upstream molecule of MAPK/ERK in PMD model mice, promotes myelination in CNS tissues. Expression of MEK2K101A in PMD model mice also improves Rotor-rod test performance, which is often used to assess motor coordination in a rodent model with neuropathy. These results suggest that in PMD model mice, MEK2K101A can ameliorate impairments of myelination and motor function and that the signaling through MAPK/ERK may involve potential therapeutic target molecules of PMD in vivo.


Subject(s)
MAP Kinase Kinase 2/genetics , Pelizaeus-Merzbacher Disease/etiology , Animals , Brain/pathology , Disease Models, Animal , Female , Gene Expression Regulation, Enzymologic , Genes, Dominant , MAP Kinase Kinase 2/metabolism , MAP Kinase Signaling System/genetics , Male , Mice, Transgenic , Mutation , Myelin Proteolipid Protein/genetics , Myelin Sheath/metabolism , Myelin Sheath/pathology , Phenotype , Rotarod Performance Test
13.
Medicines (Basel) ; 7(5)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384815

ABSTRACT

BACKGROUND: Hypomyelinating leukodystrophy 3 (HLD3), previously characterized as a congenital diseases associated with oligodendrocyte myelination, is increasingly regarded as primarily affecting neuronal cells. METHODS: We used N1E-115 cells as the neuronal cell model to investigate whether HLD3-associated mutant proteins of cytoplasmic aminoacyl-tRNA synthase complex-interacting multifunctional protein 1 (AIMP1) aggregate in organelles and affect neuronal differentiation. RESULTS: 292CA frame-shift type mutant proteins harboring a two-base (CA) deletion at the 292th nucleotide are mainly localized in the lysosome where they form aggregates. Similar results are observed in mutant proteins harboring the Gln39-to-Ter (Q39X) mutation. Interestingly, the frame-shift mutant-specific peptide specifically interacts with actin to block actin fiber formation. The presence of actin with 292CA mutant proteins, but not with wild type or Q39X ones, in the lysosome is detectable by immunoprecipitation of the lysosome. Furthermore, expression of 292CA or Q39X mutants in cells inhibits neuronal differentiation. Treatment with ibuprofen reverses mutant-mediated inhibitory differentiation as well as the localization in the lysosome. CONCLUSIONS: These results not only explain the cell pathological mechanisms inhibiting phenotype differentiation in cells expressing HLD3-associated mutants but also identify the first chemical that restores such cells in vitro.

14.
Nat Commun ; 11(1): 100, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31900387

ABSTRACT

Axon initial segments (AISs) generate action potentials and regulate the polarized distribution of proteins, lipids, and organelles in neurons. While the mechanisms of AIS Na+ and K+ channel clustering are understood, the molecular mechanisms that stabilize the AIS and control neuronal polarity remain obscure. Here, we use proximity biotinylation and mass spectrometry to identify the AIS proteome. We target the biotin-ligase BirA* to the AIS by generating fusion proteins of BirA* with NF186, Ndel1, and Trim46; these chimeras map the molecular organization of AIS intracellular membrane, cytosolic, and microtubule compartments. Our experiments reveal a diverse set of biotinylated proteins not previously reported at the AIS. We show many are located at the AIS, interact with known AIS proteins, and their loss disrupts AIS structure and function. Our results provide conceptual insights and a resource for AIS molecular organization, the mechanisms of AIS stability, and polarized trafficking in neurons.


Subject(s)
Axon Initial Segment/metabolism , Proteome/metabolism , Animals , Axons , Biotinylation , Humans , Mass Spectrometry , Mice , Neurons/metabolism , Protein Transport , Rats , Rats, Sprague-Dawley
15.
J Cell Biol ; 219(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-31727776

ABSTRACT

Axon initial segments (AISs) initiate action potentials and regulate the trafficking of vesicles between somatodendritic and axonal compartments. However, the mechanisms controlling AIS assembly remain poorly defined. We performed differential proteomics and found nuclear mitotic apparatus protein 1 (NuMA1) is downregulated in AIS-deficient neonatal mouse brains and neurons. NuMA1 is transiently located at the AIS during development where it interacts with the scaffolding protein 4.1B and the dynein regulator lissencephaly 1 (Lis1). Silencing NuMA1 or protein 4.1B by shRNA disrupts AIS assembly, but not maintenance. Silencing Lis1 or overexpressing NuMA1 during AIS assembly increased the density of AIS proteins, including ankyrinG and neurofascin-186 (NF186). NuMA1 inhibits the endocytosis of AIS NF186 by impeding Lis1's interaction with doublecortin, a potent facilitator of NF186 endocytosis. Our results indicate the transient expression and AIS localization of NuMA1 stabilizes the developing AIS by inhibiting endocytosis and removal of AIS proteins.


Subject(s)
Axon Initial Segment/metabolism , Cell Cycle Proteins/genetics , Dyneins/genetics , Endocytosis/genetics , Proteomics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/antagonists & inhibitors , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Animals , Ankyrins/genetics , Axons/metabolism , Cell Adhesion Molecules/genetics , Cytoskeleton/genetics , Gene Expression Regulation/genetics , Humans , Mice , Microfilament Proteins/genetics , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Nerve Growth Factors/genetics , Neurons/metabolism , Protein Transport/genetics , RNA, Small Interfering/pharmacology
16.
Biochem Biophys Rep ; 20: 100705, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31737794

ABSTRACT

Pelizaeus-Merzbacher disease (PMD) is a central nervous system (CNS) demyelinating disease in human, currently known as prototypic hypomyelinating leukodystrophy 1 (HLD1). The gene responsible for HLD1 encodes proteolipid protein 1 (PLP1), which is the major myelin protein produced by oligodendrocytes. HLD9 is an autosomal recessive disorder responsible for the gene differing from the plp1 gene. The hld9 gene encodes arginyl-tRNA synthetase (RARS), which belongs to a family of cytoplasmic aminoacyl-tRNA synthetases. Herein we show that HLD9-associated missense mutation of Ser456-to-Leu (S456L) localizes RARS proteins as aggregates into the lysosome but not into the endoplasmic reticulum (ER) and the Golgi body. In contrast, wild-type proteins indeed distribute throughout the cytoplasm. Expression of S456L mutant constructs in cells decreases lysosome-related signaling through ribosomal S6 protein phosphorylation, which is known to be required for myelin formation. Cells harboring the S456L mutant constructs fail to exhibit phenotypes with myelin web-like structures following differentiation in FBD-102b cells, as part of the mammalian oligodendroglial cell model, whereas parental cells exhibit them. Collectively, HLD9-associated RARS mutant proteins are specifically localized in the lysosome with downregulation of S6 phosphorylation involved in myelin formation, inhibiting differentiation in FBD-102b cells. These results present some of the molecular and cellular pathological mechanisms for defect in myelin formation underlying HLD9.

17.
Adv Exp Med Biol ; 1190: 3-22, 2019.
Article in English | MEDLINE | ID: mdl-31760634

ABSTRACT

Increasing studies have demonstrated multiple signaling molecules responsible for oligodendrocytes and Schwann cells development such as migration, differentiation, myelination, and axo-glial interaction. However, complicated roles in these events are still poorly understood. This chapter focuses on well established intracellular signaling transduction and recent topics that control myelination and are elucidated from accumulating evidences. The underlying molecular mechanisms, which involved in membrane trafficking through small GTPase Arf6 and its activator cytohesins, demonstrate the crosstalk between well established intracellular signaling transduction and a new finding signaling pathway in glial cells links to physiological phenotype and essential role in peripheral nerve system (PNS). Since Arf family proteins affect the expression levels of myelin protein zero (MPZ) and Krox20, which is a transcription factor regulatory factor in early developmental stages of Schwann cells, Arf proteins likely to be key regulator for Schwann cells development. Herein, we discuss how intracellular signaling transductions in Schwann cells associate with myelination in CNS and PNS.


Subject(s)
Remyelination , Schwann Cells/physiology , Signal Transduction , Humans , Myelin Sheath/physiology , Neuroglia/physiology , Oligodendroglia/physiology
18.
Data Brief ; 25: 104029, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31194127

ABSTRACT

Charcot-Marie-Tooth (CMT) diseases are genetic neuropathies in the peripheral nervous system (PNS). Type 1 CMT diseases are neuropathies in Schwann cells, PNS myelinating glial cells, whereas type 2 CMT diseases are axonal neuropathies. In addition, there are other types of categories in CMT diseases. CMT diseases are associated with approximately 100 responsible genes. Taiwanese mutation (Asn71-to-Tyr) of alanyl-tRNA synthetase (AARS) in type 2N CMT disease has been reported to have several pathological effects on properties of AARS proteins themselves [1]. Also, some mutations in other responsible genes affect cell biological properties of their gene products [2,3]. Herein we provide the data regarding the effects of another type 2N CMT disease-associated AARS mutation (Arg329-to-His) in French family on the cellular properties.

19.
Neurosci Res ; 139: 69-78, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30261202

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is composed of a heterogeneous group of hereditary peripheral neuropathies. The peripheral nervous system primarily comprises two types of cells: neuronal cells and myelinating glial Schwann cells. CMT2 N is an autosomal dominant disease and its responsible gene encodes alanyl-tRNA synthetase (AARS), which is a family of cytoplasmic aminoacyl-tRNA synthetases. CMT2 N is associated with the mutation, including a missense mutation, which is known to decrease the enzymatic activity of AARS, but whether and how its mutation affects AARS localization and neuronal process formation remains to be understood. First, we show that the AARS mutant harboring Asn71-to-Tyr (N71Y) is not localized in cytoplasm. The expression of AARS mutant proteins in COS-7 cells mainly leads to localization into lysosome, whereas the wild type is indeed localized in cytoplasm. Second, in N1E-115 cells as the neuronal cell model, cells expressing the N71Y mutant do not have the ability to grow processes. Third, pretreatment with antiepileptic valproic acid reverses the inhibitory effect of the N71Y mutant on process growth. Taken together, the N71Y mutation of AARS leads to abnormal intracellular localization, inhibiting process growth, yet this inhibition is reversed by valproic acid.


Subject(s)
Alanine-tRNA Ligase/metabolism , Axons/metabolism , Charcot-Marie-Tooth Disease/enzymology , Neurites/metabolism , Valproic Acid/pharmacology , Alanine-tRNA Ligase/genetics , Charcot-Marie-Tooth Disease/metabolism , Humans , Mutation/genetics , Neurites/drug effects , Phenotype
20.
Data Brief ; 18: 803-807, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29900241

ABSTRACT

Schwann cells in the peripheral nervous system wrap around large diameter axons to form the myelin sheath, that contains one axon. Schwann cells also wrap around small diameter axons to form the Remak bundle, that contains many axons. Neuregulin-1 (NRG1) type III binds Schwann cell plasma membrane ErbB2/3 receptor to regulate morphological changes of Schwann cells. Herein we provide the data on the effect of NRG1 type III knockout (Miyamoto et al., 2017) [1] on the Remak bundle structure. Since complete knockout mice of NRG1type III are embryonically lethal, we have usedNRG1type III (+/-) mice's sciatic nerves in these experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...