Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(15): 44234-44250, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36683105

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), heavy metals, and plasticizer residues are continuously released into the environment. The use of living organisms, such as Apis mellifera L. and honey, is advantageous as bioindicator of the environmental health status, instead of traditional monitoring methods, showing the ability to record spatial and temporal pollutant variations. The PAHs and heavy metal presence were determined in two sampling years (2017 and 2018) in five different locations in the Molise region (Italy), characterized by different pollution levels. During 2017, most PAHs in all samples were lower than limit of detection (LOD), while in 2018, their mean concentration in bee and honey samples was of 3 µg kg-1 and 35 µg kg-1, respectively. For heavy metals, lower values were detected in 2017 (Be, Cd, and V below LOD), while in 2018, the mean concentrations were higher, 138 µg kg-1 and 69 µg kg-1, in bees and honey, respectively. Honey has been used as indicator of the presence of phthalate esters and bisphenol A in the environment. The satisfactory results confirmed that both bees and honey are an important tool for environmental monitoring. The chemometric analysis highlighted the differences in terms of pollutant concentration and variability in the different areas, validating the suitability of these matrices as bioindicators.


Subject(s)
Environmental Pollutants , Honey , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Bees , Animals , Honey/analysis , Environmental Biomarkers , Plasticizers/analysis , Biological Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Metals, Heavy/analysis , Environmental Pollutants/analysis , Environmental Monitoring/methods
2.
Plants (Basel) ; 11(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35406904

ABSTRACT

The aim of the work was to study the biological interference of the spontaneous colonization of pathogenic and saprophytic endophytes on the nitrogen assimilation of mycorrhized wheat plants cultivated in soils deficient in N and P. The nitrogen assimilation efficiency of mycorrhized plants was determined by measuring the activities of nitrate reductase assimilatory and glutamine synthetase enzymes and free amino acid patterns. Mycorrhizal plants at two different sites showed an assimilative activity of nitrate and ammonium approximately 30% greater than control plants. This activity was associated with significant increases in the amino acids Arg, Glu Gln and Orn in the roots where those amino acids are part of the inorganic nitrogen assimilation of mycorrhizal fungi. The nutrient supply of mycorrhizal fungi at the root guaranteed the increased growth of the plant that was about 40% greater in fresh weight and 25% greater in productive yield than the controls. To better understand the biological interaction between plant and fungus, microbiological screening was carried out to identify colonies of radicular endophytic fungi. Fourteen fungal strains belonging to nine different species were classified. Among pathogenic fungi, the genus Fusarium was present in all the examined roots with different frequencies, depending on the site and the fungal population present in the roots, providing useful clues regarding the principle of spatial conflict and fungal spread within the root system.

3.
Plants (Basel) ; 9(7)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32604987

ABSTRACT

The essentiality of selenium (Se) and iodine (I) for the human organism and the relationship between these two trace elements in mammal metabolism highlight the importance of the joint Se-I biofortification to vegetable crops in the frame of sustainable farming management. A research study was carried out in southern Italy to determine the effects of the combined inoculation with arbuscular mycorrhizal fungi (AMF) and biofortification with Se and I on plant growth, seed yield, quality, and antioxidant and elemental status, as well as residual biomass chemical composition of chickpea grown in two different planting times (14 January and 28 February). The AMF application improved the intensity of I and Se accumulation both in single and joint supply of these elements, resulting in higher seed yield and number as well as dry weight, and was also beneficial for increasing the content of antioxidants, protein, and macro- and microelements. Earlier planting time resulted in higher values of seed yield, as well as Se, I, N, P, Ca, protein, and antioxidant levels. Se and I showed a synergistic effect, stimulating the accumulation of each other in chickpea seeds. The AMF inoculation elicited a higher protein and cellulose synthesis, as well as glucose production in the residual biomass, compared to the single iodine application and the untreated control. From the present research, it can be inferred that the plant biostimulation through the soil inoculation with AMF and the biofortification with Se and I, applied singly or jointly, proved to be effective sustainable farming tools for improving the chickpea seed yield and/or quality, as well as the residual biomass chemical composition for energy production or beneficial metabolite extraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...