Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 141: 111900, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34328100

ABSTRACT

The efficiency of cholesterol efflux from cells promoted by high-density lipoproteins (HDLs) depends on HDL concentration and functional properties. The term "dysfunctional HDL" describes HDLs with impaired protective properties. Cholesterol efflux capacity (CEC) of HDL is reduced in patients with atherosclerosis, but the exact mechanisms underlying this impairment are not well characterized. Enriching HDLs with phospholipids (PLs) improves CEC. Herein, we assessed the potential of PL nanoparticles in improving HDL functionality. We lipidated HDL subfractions by incubating with PL nanoparticles containing soybean polyunsaturated phosphatidylcholine. Incubating blood plasma with PL nanoparticles resulted in the dose-dependent lipidation of all HDL subfractions. Changes in apolipoprotein A1 (apoA-1) and PL concentrations were the most prominent in the HDL2 fraction. Concentrations of PL in the HDL3 fraction and the fraction with a density > 1.21 g/mL increased by 30-50%, whereas apoA-1 levels decreased. We hypothesized that PL nanoparticles may cause HDL remodeling that can improve their functions. The CECs of lipidated HDLs were analyzed by incubating apolipoprotein B (apoB)-depleted plasma with 3H-cholesterol-labeled THP-1 macrophages. The findings revealed a two-fold increase in cholesterol efflux compared with native apoB-depleted plasma. Moreover, intravenous administration of PL nanoparticles restored lipid profiles and effectively protected blood vessels from atherosclerosis progression in cholesterol-fed rabbits compared with that of fenofibrate and atorvastatin. PL nanoparticles also protected against atherosclerosis and decreased the atherogenic index. Altogether, these results indicate that PL nanoparticles can be used to correct the lipid composition and CEC of HDLs. DATA AVAILABILITY: Additional data can be provided upon reasonable request from the date of publication of this article within 5 years. The request should be sent to the author-correspondent at the address cd95@mail.ru.


Subject(s)
Atherosclerosis/prevention & control , Cholesterol/metabolism , Lipoproteins, HDL/drug effects , Phospholipids/pharmacology , Animals , Apolipoprotein A-I/metabolism , Apolipoproteins B/blood , Atherosclerosis/blood , Chinchilla , Cholesterol/blood , Cholesterol, Dietary , Disease Progression , Dose-Response Relationship, Drug , Humans , Macrophages/metabolism , Male , Nanoparticles , Phosphatidylcholines/pharmacology , Rabbits
2.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228032

ABSTRACT

It is well known that blood lipoproteins (LPs) are multimolecular complexes of lipids and proteins that play a crucial role in lipid transport. High-density lipoproteins (HDL) are a class of blood plasma LPs that mediate reverse cholesterol transport (RCT)-cholesterol transport from the peripheral tissues to the liver. Due to this ability to promote cholesterol uptake from cell membranes, HDL possess antiatherogenic properties. This function was first observed at the end of the 1970s to the beginning of the 1980s, resulting in high interest in this class of LPs. It was shown that HDL are the prevalent class of LPs in several types of living organisms (from fishes to monkeys) with high resistance to atherosclerosis and cardiovascular disorders. Lately, understanding of the mechanisms of the antiatherogenic properties of HDL has significantly expanded. Besides the contribution to RCT, HDL have been shown to modulate inflammatory processes, blood clotting, and vasomotor responses. These particles also possess antioxidant properties and contribute to immune reactions and intercellular signaling. Herein, we review data on the structure and mechanisms of the pleiotropic biological functions of HDL from the point of view of their evolutionary role and complex dynamic nature.


Subject(s)
Atherosclerosis/blood , Cholesterol/metabolism , Homeostasis/physiology , Lipoproteins, HDL/physiology , Animals , Anti-Infective Agents/blood , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/blood , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Atherosclerosis/genetics , Atherosclerosis/physiopathology , Biological Transport , Blood Coagulation/drug effects , Blood Coagulation/physiology , Cholesterol/chemistry , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/classification , Lipoproteins, HDL/isolation & purification , Signal Transduction , Vasodilator Agents/blood , Vasodilator Agents/pharmacology , Vasomotor System/drug effects , Vasomotor System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...