Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Life Sci Alliance ; 4(5)2021 05.
Article in English | MEDLINE | ID: mdl-33658318

ABSTRACT

The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Neuroblastoma/metabolism , Protein Serine-Threonine Kinases/metabolism , rac1 GTP-Binding Protein/metabolism , Adrenergic Neurons/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cells, Cultured , Child, Preschool , Databases, Genetic , Female , Guanine Nucleotide Exchange Factors/physiology , Humans , Male , Neuroblastoma/pathology , Prospective Studies , Protein Serine-Threonine Kinases/physiology , rac1 GTP-Binding Protein/physiology
2.
Cancer Res ; 76(18): 5523-37, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27635046

ABSTRACT

The broad clinical spectrum of neuroblastoma ranges from spontaneous regression to rapid progression despite intensive multimodal therapy. This diversity is not fully explained by known genetic aberrations, suggesting the possibility of epigenetic involvement in pathogenesis. In pursuit of this hypothesis, we took an integrative approach to analyze the methylomes, transcriptomes, and copy number variations in 105 cases of neuroblastoma, complemented by primary tumor- and cell line-derived global histone modification analyses and epigenetic drug treatment in vitro We found that DNA methylation patterns identify divergent patient subgroups with respect to survival and clinicobiologic variables, including amplified MYCN Transcriptome integration and histone modification-based definition of enhancer elements revealed intragenic enhancer methylation as a mechanism for high-risk-associated transcriptional deregulation. Furthermore, in high-risk neuroblastomas, we obtained evidence for cooperation between PRC2 activity and DNA methylation in blocking tumor-suppressive differentiation programs. Notably, these programs could be re-activated by combination treatments, which targeted both PRC2 and DNA methylation. Overall, our results illuminate how epigenetic deregulation contributes to neuroblastoma pathogenesis, with novel implications for its diagnosis and therapy. Cancer Res; 76(18); 5523-37. ©2016 AACR.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Neuroblastoma/genetics , Adolescent , Cell Line, Tumor , Child , Child, Preschool , Chromatin Immunoprecipitation , Cluster Analysis , Female , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Male , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/mortality , Neuroblastoma/pathology , Oligonucleotide Array Sequence Analysis , Transcription, Genetic , Transcriptome , Young Adult
3.
Oncotarget ; 6(39): 41522-34, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26575016

ABSTRACT

We explored the potential of Smac mimetics, which antagonize Inhibitor of Apoptosis (IAP) proteins, for chemosensitization of neuroblastoma (NB). Here, we report that Smac mimetics, e.g. BV6, prime NB cells for chemotherapeutics including the topoisomerase II inhibitor doxorubicin (DOX) and vinca alkaloids such as Vincristine (VCR), Vinblastine (VBL) and Vinorelbine (VNR). Additionally, BV6 acts in concert with DOX or VCR to suppress long-term clonogenic growth. While BV6 causes rapid downregulation of cellular IAP (cIAP)1 protein and nuclear factor-kappaB (NF-κB) activation, DOX/BV6- or VCR/BV6-induced apoptosis occurs independently of NF-κB or TNFα signaling, since overexpression of dominant-negative IκBα superrepressor or the Tumor Necrosis Factor (TNF)α-blocking antibody Enbrel fail to block cell death. Mechanistic studies reveal that Receptor-interacting protein (RIP)1 is required for DOX/BV6-, but not for VCR/BV6-induced apoptosis, since transient or stable knockdown of RIP1 or the pharmacological RIP1 inhibitor necrostatin-1 significantly reduce apoptosis. By comparison, VCR/BV6-mediated apoptosis critically depends on the mitochondrial pathway. VCR/BV6 cotreatment causes phosphorylation of BCL-2 during mitotic arrest, enhanced activation of BAX and BAK and loss of mitochondrial membrane potential (MMP). Additionally, overexpression of BCL-2 profoundly suppresses VCR/BV6-induced apoptosis. Thus, BV6 sensitizes NB cells to chemotherapy-induced apoptosis via distinct initial signaling mechanisms depending on the chemotherapeutic drug. These findings provide novel mechanistic insights into Smac mimetic-mediated chemosensitization of NB.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomimetic Materials , Drug Resistance, Neoplasm/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Neuroblastoma/drug therapy , Nuclear Pore Complex Proteins/metabolism , Oligopeptides/pharmacology , RNA-Binding Proteins/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins , CD47 Antigen/metabolism , Caspases/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Enzyme Activation , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Nuclear Pore Complex Proteins/antagonists & inhibitors , Nuclear Pore Complex Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Signal Transduction/drug effects , Time Factors , Topoisomerase II Inhibitors/pharmacology , Transfection , Vincristine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...