Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500468

ABSTRACT

Almost one-third of all infectious diseases are caused by viruses, and these diseases account for nearly 20% of all deaths globally. It is becoming increasingly clear that highly contagious viral infections pose a significant threat to global health and economy around the world. The need for innovative, affordable, and safe antiviral therapies is a must. Zinc oxide nanoparticles are novel materials of low toxicity and low cost and are known for their antiviral activity. The genus Pelargonium was previously reported for its antiviral and antimicrobial activity. In this work, Pelargonium zonale leaf extract chemical profile was studied via high-performance liquid chromatography (HPLC) and was used for the biosynthesis of zinc oxide nanoparticles. Furthermore, the antiviral activity of the combination of P. zonale extract and the biosynthesized nanoparticles of ZnO against the human corona 229E virus was investigated. Results revealed that ZnONPs had been biosynthesized with an average particle size of about 5.5 nm and characterized with UV, FTIR, TEM, XRD, and SEM. The antiviral activity showed significant activity and differences among the tested samples in favor of the combination of P. zonale extract and ZnONPs (ZnONPs/Ex). The lowest IC50, 2.028 µg/mL, and the highest SI, 68.4 of ZnONPs/Ex, assert the highest antiviral activity of the combination against human coronavirus (229E).


Subject(s)
Metal Nanoparticles , Nanoparticles , Pelargonium , Viruses , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nanoparticles/chemistry , Metal Nanoparticles/chemistry
2.
Food Funct ; 12(10): 4630-4643, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33912870

ABSTRACT

Here, we investigated the chemical composition of the edible Phlomis aurea oil and its anticancer potential on three human cancer cell lines, as well as its antiviral activity against Herpes simplex-1 (HSV-1). Exploring Phlomis aurea Decne essential oil by gas chromatography coupled with mass spectrometry (GC/MS) revealed the presence of four major components: germacrene D (51.56%), trans-ß-farnesene (11.36%), α-pinene (22.96%) & limonene (6.26%). An antiproliferative effect, as determined by the MTT assay, against human hepatic, breast and colon cancer cell lines, manifested IC50 values of 10.14, 328.02, & 628.43 µg mL-1, respectively. Cytotoxicity assay of the Phlomis oil against Vero cell lines revealed a safe profile within the range of 50 µg ml-1. Phlomis essential oil induced the apoptosis of HepG2 cells through increasing cell accumulation in sub G1 & G2/M phases, decreasing both S & G0/G1 phases of the cell cycle, triggering both caspases-3 &-9, and inhibiting cyclin dependent kinase-2 (CDK2). The antiviral activity of the oil against HSV-1 was investigated using the plaque reduction assay, which showed 80% of virus inhibition. Moreover, the molecular docking in silico study of the four major chemical constituents of the oil at the CDK2 binding site demonstrated marked interactions with the ATP-binding site residues through alkyl & Pi-alkyl interactions. Cell cycle distribution of HepG2 cells was studied using flow cytometry to highlight the apoptotic mechanistic approaches by measuring caspases-3 &-9 and CDK2 activities. Thus, the edible Phlomis oil can be regarded as a candidate for in vivo studies to prove that it is a promising natural antiviral/anticancer agent.


Subject(s)
Antiviral Agents/chemistry , Oils, Volatile/chemistry , Phlomis/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Antiviral Agents/pharmacology , Bicyclic Monoterpenes , Binding Sites , Cell Cycle , Cell Line, Tumor , Cyclin-Dependent Kinase 2/chemistry , Egypt , Gas Chromatography-Mass Spectrometry , Hep G2 Cells , Humans , Molecular Docking Simulation , Plant Extracts/pharmacology , Sesquiterpenes , Sesquiterpenes, Germacrane
SELECTION OF CITATIONS
SEARCH DETAIL
...