Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Neurol (Paris) ; 179(6): 607-629, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37003897

ABSTRACT

Resective surgery is the treatment of choice for one-third of adult patients with focal, drug-resistant epilepsy. This procedure is associated with substantial clinical and cognitive risks. In clinical practice, there is no validated model for epilepsy surgery outcome prediction (ESOP). Meta-analyses on ESOP studies assessing prognostic factors report discrepancies in terms of study design. Our review aims to systematically investigate methodological and analytical aspects of studies predicting clinical and cognitive outcomes after temporal lobe epilepsy surgery. A systematic review of ESOP studies published between 2000 and 2022 from three databases (MEDLINE, Web of Science, and PsycINFO) was completed by following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. It yielded 4867 articles. Among them, 21 corresponded to our inclusion criteria and were therefore retained in the final review. The risk of bias was assessed using A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies (PROBAST). Data extracted from the 21 studies were analyzed using narrative synthesis and descriptive statistics. Our findings show an increase in the use of multimodal datasets and machine learning analyses in recent ESOP studies, although regression remained the most frequently used approach. We also identified a more frequent use of network notions in recent ESOP studies. Nevertheless, several methodological issues were noted, such as small sample sizes, lack of information on the follow-up period, variability in seizure outcome, and the definition of neuropsychological postoperative change. Of 21 studies, only one provided a clinical tool to anticipate the cognitive outcome after epilepsy surgery. We conclude that methodological issues should be overcome before we move towards more complete models to better predict clinical and cognitive outcomes after epilepsy surgery. Recommendations for future studies to harness the possibilities of multimodal datasets and data fusion, are provided. A stronger bridge between fundamental and clinical research may result in developing accessible clinical tools.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Adult , Humans , Epilepsy, Temporal Lobe/surgery , Epilepsy/psychology , Seizures , Prognosis , Treatment Outcome
2.
Neuropsychologia ; 142: 107455, 2020 05.
Article in English | MEDLINE | ID: mdl-32272118

ABSTRACT

We aimed to identify cognitive signatures (phenotypes) of patients suffering from mesial temporal lobe epilepsy (mTLE) with respect to their epilepsy lateralization (left or right), through the use of SVM (Support Vector Machine) and XGBoost (eXtreme Gradient Boosting) machine learning (ML) algorithms. Specifically, we explored the ability of the two algorithms to identify the most significant scores (features, in ML terms) that segregate the left from the right mTLE patients. We had two versions of our dataset which consisted of neuropsychological test scores: a "reduced and working" version (n = 46 patients) without any missing data, and another one "original" (n = 57) with missing data but useful for testing the robustness of results obtained with the working dataset. The emphasis was placed on a precautionary machine learning (ML) approach for classification, with reproducible and generalizable results. The effects of several clinical medical variables were also studied. We obtained excellent predictive classification performances (>75%) of left and right mTLE with both versions of the dataset. The most segregating features were four language and memory tests, with a remarkable stability close to 100%. Thus, these cognitive tests appear to be highly relevant for neuropsychological assessment of patients. Moreover, clinical variables such as structural asymmetry between hippocampal gyri, the age of patients and the number of anti-epileptic drugs, influenced the cognitive phenotype. This exploratory study represents an in-depth analysis of cognitive scores and allows observing interesting interactions between language and memory performance. We discuss implications of these findings in terms of clinical and theoretical applications and perspectives in the field of neuropsychology.


Subject(s)
Epilepsy, Temporal Lobe , Hippocampus , Cognition , Epilepsy, Temporal Lobe/complications , Humans , Machine Learning , Magnetic Resonance Imaging , Memory , Neuropsychological Tests
3.
Brain Inform ; 4(3): 159-169, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28434153

ABSTRACT

Our goal was to apply a statistical approach to allow the identification of atypical language patterns and to differentiate patients with epilepsy from healthy subjects, based on their cerebral activity, as assessed by functional MRI (fMRI). Patients with focal epilepsy show reorganization or plasticity of brain networks involved in cognitive functions, inducing 'atypical' (compared to 'typical' in healthy people) brain profiles. Moreover, some of these patients suffer from drug-resistant epilepsy, and they undergo surgery to stop seizures. The neurosurgeon should only remove the zone generating seizures and must preserve cognitive functions to avoid deficits. To preserve functions, one should know how they are represented in the patient's brain, which is in general different from that of healthy subjects. For this purpose, in the pre-surgical stage, robust and efficient methods are required to identify atypical from typical representations. Given the frequent location of regions generating seizures in the vicinity of language networks, one important function to be considered is language. The risk of language impairment after surgery is determined pre-surgically by mapping language networks. In clinical settings, cognitive mapping is classically performed with fMRI. The fMRI analyses allowing the identification of atypical patterns of language networks in patients are not sufficiently robust and require additional statistic approaches. In this study, we report the use of a statistical nonlinear machine learning classification, the Extreme Gradient Boosting (XGBoost) algorithm, to identify atypical patterns and classify 55 participants as healthy subjects or patients with epilepsy. XGBoost analyses were based on neurophysiological features in five language regions (three frontal and two temporal) in both hemispheres and activated with fMRI for a phonological (PHONO) and a semantic (SEM) language task. These features were combined into 135 cognitively plausible subsets and further submitted to selection and binary classification. Classification performance was scored with the Area Under the receiver operating characteristic curve (AUC). Our results showed that the subset SEM_LH BA_47-21 (left fronto-temporal activation induced by the SEM task) provided the best discrimination between the two groups (AUC of 91 ± 5%). The results are discussed in the framework of the current debates of language reorganization in focal epilepsy.

SELECTION OF CITATIONS
SEARCH DETAIL
...